【題目】下列函數(shù):①f(x)=3|x| , ②f(x)=x3 , ③f(x)=ln ,④f(x)= ,⑤f(x)=﹣x2+1中,既是偶函數(shù),又是在區(qū)間(0,+∞)上單調(diào)遞減函數(shù)為 . (寫出符合要求的所有函數(shù)的序號).
【答案】③⑤
【解析】解:①、f(x)=3|x|是偶函數(shù),但是在區(qū)間(0,+∞)上單調(diào)遞增,不符合題意;
②、f(x)=x3是奇函數(shù),在區(qū)間(0,+∞)上單調(diào)遞增,不符合題意;
③、f(﹣x)=ln =f(x),則是偶函數(shù),又在區(qū)間(0,+∞)上單調(diào)遞減,符合題意;
④、f(x)= = 是偶函數(shù),但在區(qū)間(0,+∞)上遞增,不符合題意;
⑤、f(x)=﹣x2+1是偶函數(shù),且在區(qū)間(0,+∞)上單調(diào)遞減函數(shù),故符合題意.
所以答案是:③⑤.
【考點精析】通過靈活運用函數(shù)單調(diào)性的判斷方法和函數(shù)的奇偶性,掌握單調(diào)性的判定法:①設x1,x2是所研究區(qū)間內(nèi)任兩個自變量,且x1<x2;②判定f(x1)與f(x2)的大;③作差比較或作商比較;偶函數(shù)的圖象關于y軸對稱;奇函數(shù)的圖象關于原點對稱即可以解答此題.
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù),若對于在定義域內(nèi)存在實數(shù)滿足,則稱函數(shù)為“局部奇函數(shù)”.若函數(shù)是定義在上的“局部奇函數(shù)”,則實數(shù)的取值范圍是( )
A. [1﹣,1+) B. [﹣1,2] C. [﹣2,2] D. [﹣2,1﹣]
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】直三棱柱ABC﹣A1B1C1中,AB⊥AC,AB=2,AC=4,AA1=2, =λ .
(1)若λ=1,求直線DB1與平面A1C1D所成角的正弦值;
(2)若二面角B1﹣A1C1﹣D的大小為60°,求實數(shù)λ的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=x|x﹣2|.
(1)作出函數(shù)f(x)=x|x﹣2|的大致圖象;
(2)若方程f(x)﹣k=0有三個解,求實數(shù)k的取值范圍.
(3)若x∈(0,m](m>0),求函數(shù)y=f(x)的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)
(1) 若,求的圖象在處的切線方程;
(2)若在定義域上是單調(diào)函數(shù),求的取值范圍;
(3)若存在兩個極值點,求證:
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設數(shù)列{an}滿足:an+1=an2﹣nan+1,n=1,2,3,…
(1)當a1=2時,求a2 , a3 , a4并由此猜測an的一個通項公式;
(2)當a1≥3時,證明對所有的n≥1,有
①an≥n+2
② .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知復數(shù)z=(m2+m)+(m+1)i
(1)實數(shù)m為何值時,復數(shù)z為純虛數(shù);
(2)若m=﹣2,求 的共軛復數(shù)的模.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com