【題目】某公司為評估兩套促銷活動方案(方案1運作費用為5/件;方案2的運作費用為2元件),在某地區(qū)部分營銷網(wǎng)點進(jìn)行試點(每個試點網(wǎng)點只采用一種促銷活動方案),運作一年后,對比該地區(qū)上一年度的銷售情況,制作相應(yīng)的等高條形圖如圖所示.

1)請根據(jù)等高條形圖提供的信息,為該公司今年選擇一套較為有利的促銷活動方案(不必說明理由);

2)已知該公司產(chǎn)品的成本為10/件(未包括促銷活動運作費用),為制定本年度該地區(qū)的產(chǎn)品銷售價格,統(tǒng)計上一年度的8組售價(單位:元/件,整數(shù))和銷量(單位:件)如下表所示:

售價

33

35

37

39

41

43

45

47

銷量

840

800

740

695

640

580

525

460

①請根據(jù)下列數(shù)據(jù)計算相應(yīng)的相關(guān)指數(shù),并根據(jù)計算結(jié)果,選擇合適的回歸模型進(jìn)行擬合;

②根據(jù)所選回歸模型,分析售價定為多少時?利潤可以達(dá)到最大.

52446.95

13142

122.89

124650

(附:相關(guān)指數(shù)

【答案】1)方案1;(2)①見解析,;②

【解析】

1)由等高條形圖可知,年度平均銷售額方案1的運作相關(guān)性更強(qiáng)于方案2.

2)①根據(jù)題給數(shù)據(jù)和公式,分別求出相關(guān)指數(shù),比較即可得出結(jié)論;

②由(1)可知,采用方案1的運作效果比方案2的好,故年利潤,利用導(dǎo)數(shù)求出單調(diào)性的方法,即可求出結(jié)論.

1)由等高條形圖可知,年度平均售額與方案1的運作相關(guān)性強(qiáng)于方案2.

2)①由已知數(shù)據(jù)可知,回歸模型對應(yīng)的相關(guān)指數(shù);

回歸模型對應(yīng)的相關(guān)指數(shù)

回歸模型對應(yīng)的相關(guān)指數(shù).

因為,所以采用回歸模型進(jìn)行擬合最為合適.

②由(1)可知,采用方案1的運作效果較方案2好,

故年利潤,

當(dāng)時,單調(diào)遞增;

當(dāng)時,單調(diào)適減,

故當(dāng)售價時,利潤達(dá)到最大.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】己知函數(shù)fx)對xR均有fx+2f(﹣x)=mx6,若fxlnx恒成立,則實數(shù)m的取值范圍是_________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知.

1)當(dāng)時,證明:;

2)設(shè)直線是函數(shù)在點處的切線,若直線也與相切,求正整數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)若函數(shù)f(x)在定義域內(nèi)是增函數(shù),求實數(shù)a的取值范圍;

2)當(dāng)a[1,e)時,求方程的根的個數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某調(diào)查機(jī)構(gòu)對全國互聯(lián)網(wǎng)行業(yè)進(jìn)行調(diào)查統(tǒng)計,得到整個互聯(lián)網(wǎng)行業(yè)從業(yè)者年齡分布餅狀圖,90后從事互聯(lián)網(wǎng)行業(yè)崗位分布條形圖,則下列結(jié)論中不正確的是(

注:90后指1990年及以后出生,80后指1980-1989年之間出生,80前指1979年及以前出生.

A.互聯(lián)網(wǎng)行業(yè)從業(yè)人員中90后占一半以上

B.互聯(lián)網(wǎng)行業(yè)中從事技術(shù)崗位的人數(shù)超過總?cè)藬?shù)的

C.互聯(lián)網(wǎng)行業(yè)中從事運營崗位的人數(shù)90后比80前多

D.互聯(lián)網(wǎng)行業(yè)中從事技術(shù)崗位的人數(shù)90后比80后多

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),.

(1)討論函數(shù)的單調(diào)性;

(2)已知處的切線與軸垂直,若方程有三個實數(shù)解、),求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓)的左焦點為,上一點,且軸垂直,,分別為橢圓的右頂點和上頂點,且,且的面積是,其中是坐標(biāo)原點.

1)求橢圓的方程.

2)若過點的直線,互相垂直,且分別與橢圓交于點,四點,求四邊形的面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱柱中,底面ABCD是等腰梯形,,,,頂點在底面ABCD內(nèi)的射影恰為點C.

1)求證:BC⊥平面ACD1

2)若直線DD1與底面ABCD所成的角為,求平面與平面ABCD所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖1,等腰梯形ABCD中,,,OBE中點,FBC中點.將沿BE折起到的位置,如圖2.

1)證明:平面;

2)若平面平面BCDE,求點F到平面的距離.

查看答案和解析>>

同步練習(xí)冊答案