已知函數(shù)
(1)求的值;
(2)判斷上的單調(diào)性,并給予證明.

(1);(2)上是減函數(shù).

解析試題分析:(1)表示函數(shù)中自變量取值為時對應(yīng)的函數(shù)值;(2)函數(shù)單調(diào)性的證明一般是用單調(diào)性的定義證明,即設(shè)是區(qū)間上的任意兩個實(shí)數(shù),且,然后證明(函數(shù)在區(qū)間上為為增函數(shù))或(函數(shù)在區(qū)間上為減函數(shù)).而比較的大小,通常是作差,然后把差變成若干因式之積,從而很快判斷出差的正負(fù).
試題解析:解 (1)∵,∴
(2)上是減函數(shù).
證明如下:
設(shè)任意,且.

,∴
,即,
上是減函數(shù).
考點(diǎn):(1)函數(shù)值的概念;(2)函數(shù)的單調(diào)性的證明.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

計算:
(2)已知函數(shù),求它的定義域和值域。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

定義在上的函數(shù)滿足:①對任意都有:;②當(dāng)時,,回答下列問題.
(1)證明:函數(shù)上的圖像關(guān)于原點(diǎn)對稱;
(2)判斷函數(shù)上的單調(diào)性,并說明理由.
(3)證明:,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

用定義證明函數(shù)f(x)=x2+2x-1在(0,1]上是減函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知點(diǎn)直線AM,BM相交于點(diǎn)M,且.
(1)求點(diǎn)M的軌跡的方程;
(2)過定點(diǎn)(0,1)作直線PQ與曲線C交于P,Q兩點(diǎn),且,求直線PQ的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)
(1)若存在,使不等式成立,求實(shí)數(shù)的取值范圍;
(2)設(shè),證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)函數(shù).(I)求函數(shù)的單調(diào)遞增區(qū)間;
(II) 若關(guān)于的方程在區(qū)間內(nèi)恰有兩個不同的實(shí)根,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)函數(shù)是定義在R上的奇函數(shù),對任意實(shí)數(shù)成立.
(1)證明是周期函數(shù),并指出其周期;
(2)若,求的值;
(3)若,且是偶函數(shù),求實(shí)數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)
(1)當(dāng)時,求上的最小值;
(2)若函數(shù)上為增函數(shù),求正實(shí)數(shù)的取值范圍;
(3)若關(guān)于的方程在區(qū)間內(nèi)恰有兩個相異的實(shí)根,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案