已知函數(shù)f(x)=2x-1,g(x)=求f[g(x)]和g[f(x)]的解析式.
科目:高中數(shù)學(xué) 來源: 題型:
已知c>0,且c≠1,設(shè)p:函數(shù)y=cx在R上遞減;q:函數(shù)f(x)=x2-2cx-1在上為增函數(shù),若“p且q”為假,“p或q”為真,求實數(shù)c的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
對于數(shù)集A,B,定義A+B={x|x=a+b,a∈A,b∈B},A÷B={x|x=,a∈A,b∈B},若集合A={1,2},則集合(A+A)÷A中所有元素之和為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
某學(xué)校要召開學(xué)生代表大會,規(guī)定根據(jù)班級人數(shù)每10人給一個代表名額,當(dāng)班級人數(shù)除以10的余數(shù)大于6時,再增加一名代表名額.那么各班代表人數(shù)y與該班人數(shù)x之間的函數(shù)關(guān)系用取整函數(shù)y=[x]([x]表示不大于x的最大整數(shù))可表示為( )
A.y= B.y=
C.y= D.y=
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
若函數(shù)y=ax與y=-在(0,+∞)上都是減函數(shù),則y=ax2+bx在(0,+∞)上是( )
A.增函數(shù) B.減函數(shù) C.先增后減 D.先減后增
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
函數(shù)f(x)的定義域為A,若x1,x2∈A且f(x1)=f(x2)時總有x1=x2,則稱f(x)為單函數(shù).例如:函數(shù)f(x)=2x+1(x∈R)是單函數(shù).
給出下列命題:
①函數(shù)f(x)=x2(x∈R)是單函數(shù);
②指數(shù)函數(shù)f(x)=2x(x∈R)是單函數(shù);
③若f(x)為單函數(shù),x1,x2∈A且x1≠x2,則f(x1)≠f(x2);
④在定義域上具有單調(diào)性的函數(shù)一定是單函數(shù).
其中真命題是________(寫出所有真命題的編號).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
函數(shù)f(x)的定義域為D={x|x≠0},且滿足對于任意x1,x2∈D,有f(x1·x2)=f(x1)+f(x2).
(1)求f(1)的值;
(2)判斷f(x)的奇偶性并證明你的結(jié)論;
(3)如果f(4)=1,f(x-1)<2,且f(x)在(0,+∞)上是增函數(shù),求x的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知函數(shù)f(x)=ax--3ln x,其中a為常數(shù).
(1)當(dāng)函數(shù)f(x)圖象在點處的切線的斜率為1時,求函數(shù)f(x)在上的最小值;
(2)若函數(shù)f(x)在區(qū)間(0,+∞)上既有極大值又有極小值,求a的取值范圍;
(3)在(1)的條件下,過點P(1,-4)作函數(shù)F(x)=x2[f(x)+3ln x-3]圖象的切線,試問這樣的切線有幾條?并求出這些切線方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com