設(shè)f(x)=
x2
2-x
x∈[0,1]
x∈(1,2]
,則
2
0
f(x)dx=( 。
A.
3
4
B.
4
5
C.
5
6
D.不存在
數(shù)形結(jié)合,
02f(x)dx=∫01x2dx+∫12(2-x)dx=
1
3x
.
1
0
+(2x-
1
2
x2)
.
2
1

=
1
3
+(4-2-2+
1
2
)

=
5
6

故選C
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

函數(shù)f(x)的定義域?yàn)镽,且x≠1,已知f(x+1)為奇函數(shù),當(dāng)x<1時(shí),f(x)=2x2x+1,那么當(dāng)x>1時(shí),f(x)的遞減區(qū)間是(    )
A.[,+∞B.(1,C.[,+∞D. (1,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)函數(shù)f(x)定義域?yàn)镽,當(dāng)x>0時(shí),f(x)>1,且對(duì)任意x,y∈R,有f(x+y)=f(x)•f(y).
(1)證明:f(0)=1;
(2)證明:f(x)在R上是增函數(shù);
(3)設(shè)集合A={(x,y)|f(x2)•f(y2)<f(1)},B={(x,y)|f(x+y+c)=1,c∈R},若A∩B=φ,求c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知:函數(shù)f(x)對(duì)一切實(shí)數(shù)x,y都有f(x+y)-f(y)=x(x+2y+1)成立,且f(1)=0.
(1)求f(0)的值.
(2)求f(x)的解析式.
(3)已知a∈R,設(shè)P:當(dāng)0<x<
1
2
時(shí),不等式f(x)+3<2x+a恒成立;Q:當(dāng)x∈[-2,2]時(shí),g(x)=f(x)-ax是單調(diào)函數(shù).如果滿足P成立的a的集合記為A,滿足Q成立的a的集合記為B,求A∩CRB(R為全集).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

定義在R上的函數(shù)f(x)滿足f(-x)=-f(x),f(x)=-f(x+2),且x∈(-1,0)時(shí),f(x)=2x+
1
5
,則f(log220)=______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知:函數(shù)y=f(x),x∈R,滿足f(1)=2,f(x+y)=f(x)*f(y),且f(x)是增函數(shù),
(1)證明:f(0)=1;
(2)若f(2x)*f(x2-1)≥4成立,求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)二次函數(shù)在區(qū)間[0,1]上單調(diào)遞減,且,則實(shí)數(shù)的取值范圍是(  ).
A.(-∞,0]B.[2,+∞) C.[0,2] D.(-∞,0]∪[2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)函數(shù)f(x)=-2x2+4x在區(qū)間[m,n]上的值域是[-6,2],則m+n的取值所組成的集合為(  )
A.[0,3]B.[0,4]C.[-1,3]D.[1,4]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

若二次函數(shù)f(x)=ax2+bx+c(a≠0)的圖象和直線y=x無交點(diǎn),現(xiàn)有下列結(jié)論:①方程f(f(x))=x一定沒有實(shí)數(shù)根;
②若a>0,則不等式f(f(x))>x對(duì)一切實(shí)數(shù)x都成立;
③若a<0,則必存在實(shí)數(shù)x0,使f(f(x0))>x0;
④若a+b+c=0,則不等式f(f(x))<x對(duì)一切實(shí)數(shù)都成立;
⑤函數(shù)g(x)=ax2-bx+c的圖象與直線y=-x也一定沒有交點(diǎn).
其中正確的結(jié)論是    (寫出所有正確結(jié)論的編號(hào)). 

查看答案和解析>>

同步練習(xí)冊(cè)答案