解:(Ⅰ)由x
2-x+1≤2x-1,即x
2-3x+2≤0,解得:1≤x≤2,此時f(x)=x
2-x+1;
由x
2-x+1>2x-1,即x
2-3x+2>0,解得:x<1或x>2.
∴
.
∴
.
(Ⅱ)當(dāng)1≤x≤2時,f(x)=x
2-x+1,
=
=
.
令
,
則函數(shù)h(x)的零點(diǎn)個數(shù),即為函數(shù)y=g(x)與函數(shù)y=-t的交點(diǎn)個數(shù).
由g
′(x)=2x
2-x-1=(2x+1)(x-1).
當(dāng)x∈(1,2)時,g
′(x)>0,∴g(x)在(1,2)上單調(diào)遞增.
又
,
.
∴當(dāng)
,即
時,函數(shù)h(x)有一個零點(diǎn);
當(dāng)
或
,即
或
時,函數(shù)h(x)沒有零點(diǎn).
綜上所述,當(dāng)
時,函數(shù)h(x)有一個零點(diǎn);
當(dāng)
或
時,函數(shù)h(x)沒有零點(diǎn).
分析:(Ⅰ)通過求解不等式得到x
2-x+1≤2x-1和x
2-x+1>2x-1的x的取值范圍,從而寫出分段函數(shù)f(x),直接代入后可求f(
)的值;
(Ⅱ)求函數(shù)h(x)=
(t∈R)的零點(diǎn)個數(shù),即求函數(shù)
與函數(shù)y=x的交點(diǎn)個數(shù),把函數(shù)f(x)的解析式代入后利用導(dǎo)數(shù)分析函數(shù)
的極值點(diǎn)的情況,根據(jù)函數(shù)極值點(diǎn)的情況可得函數(shù)
與函數(shù)y=x的交點(diǎn)個數(shù),從而得到函數(shù)h(x)=
(t∈R)的零點(diǎn)個數(shù).
點(diǎn)評:本題考查了利用導(dǎo)數(shù)研究函數(shù)的極值,考查了函數(shù)零點(diǎn)個數(shù)的判斷,一個函數(shù)零點(diǎn)的個數(shù),就是該函數(shù)對應(yīng)的方程的根的個數(shù),此類問題往往轉(zhuǎn)化為另外兩個函數(shù)交點(diǎn)的個數(shù)來解決,是中檔題.