已知定義在R上的二次函數(shù)滿足,且的最小值為0,函數(shù),又函數(shù)

(I)求的單調(diào)區(qū)間;

(II)當(dāng)時,若,求的最小值;

(III)若二次函數(shù)圖象過(4,2)點(diǎn),對于給定的函數(shù)圖象上的點(diǎn)A(),當(dāng)時,探求函數(shù)圖象上是否存在點(diǎn)B()(),使A、B連線平行于x軸,并說明理由。

(參考數(shù)據(jù):e=2.71828…)

 

【答案】

(I)

可得

在x=0時取得最小值0,

 

 

當(dāng)x變化時,的變化情況如下表:

(0,

,+

0

增函數(shù)

極大值

減函數(shù)

所以,的單調(diào)遞增區(qū)間是(0,),的單調(diào)遞減區(qū)間是(,+)。

(II)時,≥1,

時,的最小值為中的較小者.  ……………………7分

時,的最小值;

  當(dāng)時, 的最小值  ……………………9分

(III)證明:若二次函數(shù)圖象過(4,2)點(diǎn),則,所以

由(I)知在(0,2)內(nèi)單調(diào)遞增,

   ……………………11分

所以存在

即存在

所以函數(shù)圖象上存在點(diǎn)B()(),使A、B連線平行于x軸.

【解析】略

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在R上的二次函數(shù)f(x)=ax2-2bx+3
(1)如果a是集合{1,2,3,4}中的任一元素,b是集合{0,2,3}中的任一元素,試求函數(shù)f(x)在區(qū)間[1,+∞)上單調(diào)遞增的概率,
(2)如果a是從區(qū)間[1,4]上任取一個數(shù),b是從區(qū)間[0,3]上任取一個數(shù),試求函數(shù)f(x)在區(qū)間[1,+∞)上單調(diào)遞增的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在R上的二次函數(shù)R(x)=ax2+bx+c滿足2R(-x)-2R(x)=0,且R(x)的最小值為0,函數(shù)h(x)=lnx,又函數(shù)f(x)=h(x)-R(x).
(I)求f(x)的單調(diào)區(qū)間;  
(II)當(dāng)a≤
1
2
時,若x0∈[1,3],求f(x0)的最小值;
(III)若二次函數(shù)R(x)圖象過(4,2)點(diǎn),對于給定的函數(shù)f(x)圖象上的點(diǎn)A(x1,y1),當(dāng)x1=
3
2
時,探求函數(shù)f(x)圖象上是否存在點(diǎn)B(x2,y2)(x2>2),使A、B連線平行于x軸,并說明理由.(參考數(shù)據(jù):e=2.71828…)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在R上的二次函數(shù)R(x)=ax2+bx(a>0)是偶函數(shù),函數(shù)f(x)=2lnx-R(x).
(I)求f(x)的單調(diào)區(qū)間;  
(II)當(dāng)a≤1時,若x0∈[1,2],求f(x0)的最大值;
(III)若二次函數(shù)R(x)圖象過(1,1)點(diǎn),對于給定的函數(shù)f(x)圖象上的點(diǎn)A(x1,y1),當(dāng)x1=
1e
時,探求函數(shù)f(x)圖象上是否存在點(diǎn)B(x2,y2)(x2>1),使A、B連線平行于x軸,并說明理由.(參考數(shù)據(jù):e=2.71828…)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年福建省高三第二次質(zhì)檢理科數(shù)學(xué)復(fù)習(xí)卷(二) 題型:解答題

.已知定義在R上的二次函數(shù)滿足,且的最小值

為0,函數(shù),又函數(shù)。

(I)求的單調(diào)區(qū)間;  (II)當(dāng)時,若,求的最小值;

(III)若二次函數(shù)圖象過(4,2)點(diǎn),對于給定的函數(shù)圖象上的點(diǎn)A(),

當(dāng)時,探求函數(shù)圖象上是否存在點(diǎn))(),使、連線平行于軸,并說明理由。(參考數(shù)據(jù):e=2.71828…)

 

 

 

查看答案和解析>>

同步練習(xí)冊答案