精英家教網 > 高中數學 > 題目詳情
如圖,已知矩形ABCD中,AB=10,BC=6,將矩形沿對角線BD把△ABD折起,使A移到A1點,且A1在平面BCD上的射影O恰好在CD上.
(1)求證:BC⊥A1D;
(2)求證:平面A1BC⊥平面A1BD;
(3)求三棱錐A1-BCD的體積.

【答案】分析:(1)由A1在平面BCD上的射影O在CD上得A1O⊥平面BCD⇒BC⊥A1O;又BC⊥CO⇒BC⊥平面A1CD⇒BC⊥A1D;
(2)先由ABCD為矩形⇒A1D⊥A1B,再由(Ⅰ)知A1D⊥BC⇒A1D⊥平面A1BC,即可得到平面A1BC⊥平面A1BD;
(3)把求三棱錐A1-BCD的體積轉化為求三棱錐B-A1CD的體積即可.
解答:證明:(1)連接A1O,
∵A1在平面BCD上的射影O在CD上,
∴A1O⊥平面BCD,又BC?平面BCD
∴BC⊥A1O
又BC⊥CO,A1O∩CO=O,
∴BC⊥平面A1CD,又A1D?平面A1CD,
∴BC⊥A1D

(2)∵ABCD為矩形,∴A1D⊥A1B由(Ⅰ)知A1D⊥BC,A1B∩BC=B
∴A1D⊥平面A1BC,又A1D?平面A1BD
∴平面A1BC⊥平面A1BD
(3)∵A1D⊥平面A1BC,
∴A1D⊥A1C.
∵A1D=6,CD=10,∴A1C=8,
∴V=V==48.
故所求三棱錐A1-BCD的體積為:48.
點評:本題是對線線垂直以及面面垂直和三棱錐的體積計算的綜合考查.在證明面面垂直時,其常用方法是在其中一個平面內找兩條相交直線和另一平面內的某一條直線垂直
練習冊系列答案
相關習題

科目:高中數學 來源:名師指點學高中課程 數學 高二(下) 題型:044

如圖,已知在矩形ABCD中,AB=3,BC=4,沿對角線AC將△ABC折起,使B點在平面ADC內的射影恰好落在AD上,求:

(1)異面直線AB與CD成的角;

(2)異面直線AB與CD的距離;

(3)二面角B-AC-D的大。

查看答案和解析>>

科目:高中數學 來源:2014屆安徽省高一下學期期中考試數學試卷(解析版) 題型:解答題

如圖,已知矩形ABCD所在平面外一點P,PA⊥平面ABCD,E、F分別是AB、

PC的中點.

(1)求證:EF∥平面PAD;

(2)求證:EF⊥CD;

(3)若ÐPDA=45°求EF與平面ABCD所成的角的大小.

【解析】本試題主要考查了線面平行和線線垂直的運用,以及線面角的求解的綜合運用

第一問中,利用連AC,設AC中點為O,連OF、OE在△PAC中,∵ F、O分別為PC、AC的中點   ∴ FO∥PA …………①在△ABC中,∵ E、O分別為AB、AC的中點 ∴ EO∥BC ,又         ∵ BC∥AD   ∴ EO∥AD …………②綜合①、②可知:平面EFO∥平面PAD∵ EF Ì 平面EFO   ∴ EF∥平面PAD.

第二問中在矩形ABCD中,∵ EO∥BC,BC⊥CD ∴ EO⊥CD  又    ∵ FO∥PA,PA⊥平面AC  ∴ FO⊥平面AC∴ EO為EF在平面AC內的射影       ∴ CD⊥EF.

第三問中,若ÐPDA=45°,則 PA=AD=BC    ∵ EOBC,FOPA

∴ FO=EO 又∵ FO⊥平面AC∴ △FOE是直角三角形 ∴ ÐFEO=45°

證:連AC,設AC中點為O,連OF、OE(1)在△PAC中,∵ F、O分別為PC、AC的中點∴ FO∥PA …………①    在△ABC中,∵ E、O分別為AB、AC的中點  ∴ EO∥BC ,又         ∵ BC∥AD   ∴ EO∥AD …………②綜合①、②可知:平面EFO∥平面PAD    

∵ EF Ì 平面EFO      ∴ EF∥平面PAD.

(2)在矩形ABCD中,∵ EO∥BC,BC⊥CD∴ EO⊥CD  又        ∵ FO∥PA,PA⊥平面AC  ∴ FO⊥平面AC ∴ EO為EF在平面AC內的射影     ∴ CD⊥EF.

(3)若ÐPDA=45°,則 PA=AD=BC         ∵ EOBC,FOPA

∴ FO=EO 又    ∵ FO⊥平面AC   ∴ △FOE是直角三角形 ∴ ÐFEO=45°

 

查看答案和解析>>

科目:高中數學 來源:2010-2011學年江蘇省南京市高三第二次模擬考試數學卷 題型:解答題

在A、B、C、D四小題中只能選做2題,每小題10,共計20分。請在答題卡指定區(qū)域作答。解答應寫出文字說明、證明過程或演算步驟。

A、選修4-1:幾何證明選講

   如圖,已知梯形ABCD為圓內接四邊形,AD//BC,過C作該圓的切線,交AD的延長線于E,求證:ΔABC∽ΔEDC。

B、選修4-2:矩形與變換

已知 為矩陣屬于λ的一個特征向量,求實數a,λ的值及A2。

C、選修4-4:坐標系與參數方程

   在平面直角坐標系xoy中,曲線C的參數方程為(α為參數),曲線D的參數方程為,(t為參數)。若曲線C、D有公共點,求實數m的取值范圍。

D、選修4-5:不等式選講

   已知a,b都是正實數,且ab=2。求證:(1+2a)(1+b)≥9。

 

查看答案和解析>>

科目:高中數學 來源: 題型:

如圖,已知幾何體ABC-DEF中,△ABC及△DEF都是邊長為2的等邊三角形,四邊形ABEF為矩形,且CD=AF+2,CD//AF,O為AB中點.

(1)求證:AB⊥平面DCO

(2)若M為CD中點,AF=x,則當x取何值時,使AM與平面ABEF所成角為45°?

試求相應的x值的.

(3)求該幾何體在(2)的條件下的體積.

查看答案和解析>>

科目:高中數學 來源:2011屆江蘇省南京市高三第二次模擬考試數學卷 題型:解答題

在A、B、C、D四小題中只能選做2題,每小題10,共計20分。請在答題卡指定區(qū)域作答。解答應寫出文字說明、證明過程或演算步驟。
A、選修4-1:幾何證明選講
如圖,已知梯形ABCD為圓內接四邊形,AD//BC,過C作該圓的切線,交AD的延長線于E,求證:ΔABC∽ΔEDC。

B、選修4-2:矩形與變換
已知為矩陣屬于λ的一個特征向量,求實數a,λ的值及A2。
C、選修4-4:坐標系與參數方程
在平面直角坐標系xoy中,曲線C的參數方程為(α為參數),曲線D的參數方程為,(t為參數)。若曲線C、D有公共點,求實數m的取值范圍。
D、選修4-5:不等式選講
已知a,b都是正實數,且ab=2。求證:(1+2a)(1+b)≥9。

查看答案和解析>>

同步練習冊答案