精英家教網(wǎng)如圖,在Rt△ABC中,∠C是直角,AC=3,BC=4,CD⊥AB于點(diǎn)D,∠A的平分線交CD于點(diǎn)M,交BC于點(diǎn)E,求:
(1)CD的長(zhǎng);
(2)AE的長(zhǎng).
分析:(1)CD的長(zhǎng),可先求出AB的長(zhǎng),再用等面積法求得CD的長(zhǎng)即可;
(2)AE的長(zhǎng),可根據(jù)角平分線的性質(zhì)求得CE的長(zhǎng),再有勾股定理求得AE的長(zhǎng)即可.
解答:解:(1)∵∠C是直角AC=3,BC=4,∴AB=5
由AB×CD=AC×BC得,CD=
AC×BC
AB
=
3×4
5
=
12
5

(2)由AE是∠A的平分線交CD于點(diǎn)M,交BC于點(diǎn)E,
CE
BE
=
AC
AB
=
3
5

故CE=
3
8
BC=
3
2

在Rt△ACM中,由勾股定理,得AE=
3
5
2
點(diǎn)評(píng):本題考查三角形中的幾何計(jì)算,考查了用等面積法求長(zhǎng)度以及角平分線的性質(zhì),屬于基本題型.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在Rt△ABC中,∠C=90°,D為BC上一點(diǎn),∠DAC=30°,BD=2,AB=2
3
,則AC的長(zhǎng)為( 。
A、2
2
B、3
C、
3
D、
3
2
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在Rt△ABC中,∠ACB=90°,以AC為直徑的⊙O與AB邊交于點(diǎn)D,過(guò)點(diǎn)D作⊙O的切線,交BC于點(diǎn)E.
(1)求證:點(diǎn)E是邊BC的中點(diǎn);
(2)若EC=3,BD=2
6
,求⊙O的直徑AC的長(zhǎng)度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在Rt△ABC中,∠ABC=90°,BA=BC=2,AE⊥平面ABC,CD⊥平面ABC,CE交AD于點(diǎn)P.
(1)若AE=CD,點(diǎn)M為BC的中點(diǎn),求證:直線MP∥平面EAB
(2)若AE=2,CD=1,求銳二面角E-BC-A的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

8.如圖,在Rt△ABC中,∠CAB=90°,AB=2,AC=
2
2
.DO⊥AB于O點(diǎn),OA=OB,DO=2,曲線E過(guò)C點(diǎn),動(dòng)點(diǎn)P在E上運(yùn)動(dòng),且保持|PA|+|PB|的值不變.
(1)建立適當(dāng)?shù)淖鴺?biāo)系,求曲線E的方程;
(2)過(guò)D點(diǎn)的直線L與曲線E相交于不同的兩點(diǎn)M、N且M在D、N之間,設(shè)
DM
DN
=λ,試確定實(shí)數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在Rt△ABC中,AC=1,BC=x,D是斜邊AB的中點(diǎn),將△BCD沿直線CD翻折,若在翻折過(guò)程中存在某個(gè)位置,使得CB⊥AD,則x的取值范圍是( 。
A、(0,
3
]
B、(
2
2
,2]
C、(
3
,2
3
]
D、(2,4]

查看答案和解析>>

同步練習(xí)冊(cè)答案