【題目】若{ 、 、 }為空間的一組基底,則下列各項中,能構(gòu)成基底的一組向量是(
A. , + ,
B. , + ,
C. , +
D. + , +2

【答案】C
【解析】解:∵( + )+( )=2 ,∴ , + 共面,不能構(gòu)成基底,排除 A;∵( + )﹣( )=2 ,∴ , + 共面,不能構(gòu)成基底,排除 B;
+2 = + )﹣ ),∴, + , , +2 共面,不能構(gòu)成基底,排除 D;
、 + 、 共面,則 =λ( + )+m( )=(λ+m) +(λ﹣m) ,則 、 、 為共面向量,此與{ 、 、 }為空間的一組基底矛盾,故 + , 可構(gòu)成空間向量的一組基底.
故選:C
空間的一組基底,必須是不共面的三個向量,利用向量共面的充要條件可證明A、B、D三個選項中的向量均為共面向量,利用反證法可證明C中的向量不共面

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)集合M={x|0≤x≤2},N={y|0≤y≤2},給出如下四個圖形,其中能表示從集合M到集合N的函數(shù)關(guān)系的是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x2﹣2ax+5(a>1),
(1)若f(x)的定義域和值域均是[1,a],求實數(shù)a的值;
(2)若f(x)在區(qū)間(﹣∞,2]上是減函數(shù),且對任意的x∈[1,a+1],都有f(x)≤0,求實數(shù)a的取值范圍;
(3)若g(x)=2x+log2(x+1),且對任意的x∈[0,1],都存在x0∈[0,1],使得f(x0)=g(x)成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知曲線上任意一點到直線的距離比到點的距離大1.

(1)求曲線的方程;

(2)過曲線的焦點,且傾斜角為的直線交于點軸上方), 的準(zhǔn)線,點上且,到直線的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)集合A=R,集合B={y|y>0},下列對應(yīng)關(guān)系中是從集合A到集合B的映射的是(
A.x→y=|x|
B.x→y=
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖1,2,在Rt△ABC中,AB=BC=4,點E在線段AB上,過點E作交AC于點F,將△AEF沿EF折起到△PEF的位置(點A與P重合),使得∠PEB=60°.

(1)求證:EF⊥PB;
(2)試問:當(dāng)點E在何處時,四棱錐P﹣EFCB的側(cè)面的面積最大?并求此時四棱錐P﹣EFCB的體積及直線PC與平面EFCB所成角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=( x , 函數(shù)g(x)=log x.
(1)若g(ax2+2x+1)的定義域為R,求實數(shù)a的取值范圍;
(2)當(dāng)x∈[( t+1 , ( t]時,求函數(shù)y=[g(x)]2﹣2g(x)+2的最小值h(t);
(3)是否存在非負實數(shù)m,n,使得函數(shù)y=log f(x2)的定義域為[m,n],值域為[2m,2n],若存在,求出m,n的值;若不存在,則說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知銷售“筆記本電腦”和“臺式電腦”所得的利潤分別是P(單位:萬元)和Q(單位:萬元),它們與進貨資金t(單位:萬元)的關(guān)系有經(jīng)驗公式P= t和Q= .某商場決定投入進貨資金50萬元,全部用來購入這兩種電腦,那么該商場應(yīng)如何分配進貨資金,才能使銷售電腦獲得的利潤y(單位:萬元)最大?最大利潤是多少萬元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列命題正確的是(
A.在△ABC中,角A,B,C的對邊分別是a,b,c,則a>b是cos A<cos B的充要條件
B.命題p:對任意的x∈R,x2+x+1>0,則¬p:對任意的x∈R,x2+x+1≤0
C.已知p: >0,則¬p: ≤0
D.存在實數(shù)x∈R,使sin x+cos x= 成立

查看答案和解析>>

同步練習(xí)冊答案