球O的半徑為R,弦PA、PB、PC兩兩垂直,則PA2+PB2+PC2=________.

答案:
解析:

  答案:4R2

  解析:以PA、PB、PC為棱構(gòu)造長方體,長方體內(nèi)接于球,對角線長為球的直徑,則PA2+PB2+PC2=4R2


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知球O的半徑為R,一平面截球所得的截面面積為4π,球心到該截面的距離為
5
,則球O的體積等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知球O的半徑為R,圓柱內(nèi)接于球,當(dāng)內(nèi)接圓柱的體積最大時(shí),高等于(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)球O的半徑為R,A、B、C為球面上三點(diǎn),A與B、A與C的球面距離為
πR
2
,B與C的球面距離為
πR
3
,則球O在二面角B-OA-C內(nèi)的這部分球面的面積是
3
R2
3
R2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知球O的半徑為R,A、B、C為球面上的三點(diǎn),若任意兩點(diǎn)的球面距離均為
πR
3
,則球O的體積與三棱錐O-ABC的體積之比為( 。

查看答案和解析>>

同步練習(xí)冊答案