已知雙曲線x2-y2=1,點(diǎn)F1,F(xiàn)2為其兩個焦點(diǎn),點(diǎn)P為雙曲線上一點(diǎn),若PF1⊥PF2,則PF1+PF2=________.
2
不妨設(shè)點(diǎn)P在雙曲線的右支上,因?yàn)镻F1⊥PF2,所以(2)2,
又因?yàn)镻F1-PF2=2,所以(PF1-PF2)2=4,可得2PF1·PF2=4,
則(PF1+PF2)2+2PF1·PF2=12,所以PF1+PF2=2
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知點(diǎn),若為雙曲線的右焦點(diǎn),是該雙曲線上且在第一象限的動點(diǎn),則的取值范圍為(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若拋物線的焦點(diǎn)與雙曲線的右焦點(diǎn)重合,則的值為(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,正六邊形ABCDEF的兩個頂點(diǎn)A、D為雙曲線的焦點(diǎn),其余四個頂點(diǎn)都在雙曲線上,則該雙曲線的離心率為      

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

根據(jù)下列條件,求雙曲線方程.
(1)與雙曲線=1有共同的漸近線,且過點(diǎn)(-3,2);
(2)與雙曲線=1有公共焦點(diǎn),且過點(diǎn)(3,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知雙曲線的焦點(diǎn)在x軸上,兩個頂點(diǎn)間的距離為2,焦點(diǎn)到漸近線的距離為.
(1)求雙曲線的標(biāo)準(zhǔn)方程;
(2)寫出雙曲線的實(shí)軸長、虛軸長、焦點(diǎn)坐標(biāo)、離心率、漸近線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

若雙曲線方程為x2-2y2=1,則它的左焦點(diǎn)的坐標(biāo)為________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè)拋物線的焦點(diǎn)與雙曲線的上焦點(diǎn)重合,則p的值為         

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

雙曲線-=1的漸近線與圓(x-3)2+y2=r2(r>0)相切,則r=(  )
A.B.2C.3D.6

查看答案和解析>>

同步練習(xí)冊答案