【題目】在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),A,B,C三點(diǎn)滿足 = + . (Ⅰ)求證:A,B,C三點(diǎn)共線;
(Ⅱ)已知A(1,cosx),B(1+sinx,cosx),x∈[0, ],f(x)= ﹣(2m2+ )| |的最小值為 ,求實(shí)數(shù)m的值.

【答案】解:(Ⅰ)證明:根據(jù)條件:

=

=

= ;

∴A,B,C三點(diǎn)共線;

(Ⅱ)根據(jù)條件: , = , ,且 ;

= ;

=﹣sin2x﹣2m2sinx+2

=﹣(sinx+m22+m4+2;

又sinx∈[0,1];

∴sinx=1時(shí),f(x)取最小值 ;

;

;


【解析】(Ⅰ)將 代入 ,然后進(jìn)行向量的數(shù)乘運(yùn)算即可得出 ,從而得出A,B,C三點(diǎn)共線;(Ⅱ)由條件即可求出 的坐標(biāo),進(jìn)而求出 ,及 的值,代入 并化簡(jiǎn)即可得出f(x)=﹣sin2x2m2sinx+2,而配方即可得出sinx=1時(shí),f(x)取最小值 ,從而得到 ,這樣即可解出m的值.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某機(jī)械廠今年進(jìn)行了五次技能考核,其中甲、乙兩名技術(shù)骨干得分的平均分相等,成績(jī)統(tǒng)計(jì)情況如莖葉圖所示(其中a是0﹣9的某個(gè)整數(shù)

(1)若該廠決定從甲乙兩人中選派一人去參加技能培訓(xùn),從成績(jī)穩(wěn)定性角度考慮,你認(rèn)為誰(shuí)去比較合適?
(2)若從甲的成績(jī)中任取兩次成績(jī)作進(jìn)一步分析,在抽取的兩次成績(jī)中,求至少有一次成績(jī)?cè)冢?0,100]之間的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù)f(x)=log2x﹣3sin( x)零點(diǎn)的個(gè)數(shù)是(
A.2
B.3
C.4
D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】;給定函數(shù)① ,② ,③y=|x﹣1|,④y=2x+1 , 其中在區(qū)間(0,1)上單調(diào)遞減的函數(shù)序號(hào)是(
A.①②
B.②③
C.③④
D.①④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù)f(x)=Asin(ωx+φ),x∈R(其中A>0,ω>0,0<φ< )的圖象與x軸相鄰兩個(gè)交點(diǎn)間的距離為 ,且圖象上一個(gè)最低點(diǎn)為M( ,﹣2). (Ⅰ)求f(x)的解析式;
(Ⅱ)求f(x)的單調(diào)遞增區(qū)間;
(Ⅲ)當(dāng)x∈[ , ]時(shí),求f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,在直三棱柱ABC﹣A1B1C1中,∠ABC=90°,BC=CC1 , M、N分別為BB1、A1C1的中點(diǎn).
(Ⅰ)求證:CB1⊥平面ABC1;
(Ⅱ)求證:MN∥平面ABC1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】數(shù)列{an}是公差d不為0的等差數(shù)列,a1=2,Sn為其前n項(xiàng)和.
(1)當(dāng)a3=6時(shí),若a1 , a3 , …, 成等比數(shù)列(其中3<n1<n2<…<nk),求nk的表達(dá)式;
(2)是否存在合適的公差d,使得{an}的任意前3n項(xiàng)中,前n項(xiàng)的和與后n項(xiàng)的和的比值等于定常數(shù)?求出d,若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】一直線l過(guò)直線l1:3x﹣y=3和直線l2:x﹣2y=2的交點(diǎn)P,且與直線l3:x﹣y+1=0垂直.
(1)求直線l的方程;
(2)若直線l與圓心在x正半軸上的半徑為 的圓C相切,求圓C的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)g(x)=ax2﹣2ax+1+b(a≠0,b<1),在區(qū)間[2,3]上有最大值4,最小值1,設(shè)f(x)=
(1)求a,b的值;
(2)不等式f(2x)﹣k2x≥0在x∈[﹣1,1]上恒成立,求實(shí)數(shù)k的取值范圍;
(3)方程f(|2x﹣1|)+k( ﹣3)有三個(gè)不同的實(shí)數(shù)解,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案