精英家教網 > 高中數學 > 題目詳情
平面上滿足約束條件
x≥2
x+y≤0
x-y-6≤0
的點(x,y)形成的區(qū)域為D,則區(qū)域D的面積為(  )
分析:畫出約束條件
x≥2
x+y≤0
x-y-6≤0
的表示的可行域,如圖求出交點坐標,然后求出兩個三角形面積,再求出可行域的面積.
解答:解:可行域是如圖三角形ABC,
A(2,-2)B(3,-3)C(2,-4),
以AC為底邊,B到AC距離d為高來計算面積,
AC=2,d=1,
則區(qū)域D的面積為s=
1
2
×2×1=1,
故選A.
點評:本題考查二元一次不等式(組)與平面區(qū)域,關鍵是學生對不等式的理解以及實際操作中的作圖能力和計算能力,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

平面上滿足約束條件
x≥2
x+y≤0
x-y-10≤0
的點(x,y)形成的區(qū)域為D,區(qū)域D關于直線y=2x,對稱的區(qū)域為E,則區(qū)域D和E中距離最近兩點的距離為
 

查看答案和解析>>

科目:高中數學 來源: 題型:

平面上滿足約束條件
x≥2 
x+y≤0 
x-y-6≤0
的點(x,y)形成的區(qū)域D的面積為
1
1

查看答案和解析>>

科目:高中數學 來源: 題型:

平面上滿足約束條件
x≥2
x+y≤0
x-y-6≤0
的點(x,y)形成的區(qū)域為D,則區(qū)域D的面積為
 
;設區(qū)域D關于直線y=2x-1對稱的區(qū)域為E,則區(qū)域D和區(qū)域E中距離最近的兩點的距離為
 

查看答案和解析>>

科目:高中數學 來源:2013年高考百天仿真沖刺數學試卷1(文科)(解析版) 題型:填空題

平面上滿足約束條件的點(x,y)形成的區(qū)域為D,則區(qū)域D的面積為    ;設區(qū)域D關于直線y=2x-1對稱的區(qū)域為E,則區(qū)域D和區(qū)域E中距離最近的兩點的距離為   

查看答案和解析>>

同步練習冊答案