已知函數(shù)f(x)=1-2ax-a2x(0<a<1)
(1)求函數(shù)f(x)的值域;
(2)若x∈[-2,1]時(shí),函數(shù)f(x)的最小值為-7,求a的值和函數(shù)f(x)的最大值.
分析:(1)利用換元法,再進(jìn)行配方,即可求得函數(shù)f(x)的值域;
(2)原因,求得函數(shù)的單調(diào)性,利用函數(shù)f(x)的最小值為-7,可求a的值,從而可得函數(shù)f(x) 的最大值.
解答:解:(1)令t=ax,則t>0,∴g(t)=1-2t-t2=-(t+1)2+2
∵t>0,∴g(t)<1,即函數(shù)f(x)的值域?yàn)椋?∞,1);
(2)∵x∈[-2,1],0<a<1,∴t∈[a,
1
a2
]
∴g(t)=1-2t-t2在[a,
1
a2
]上是減函數(shù)
∴t=
1
a2
時(shí),g(t)min=-
1
a4
-
2
a2
+1=-7
a=
2
2
a=-
2
2
(舍去)
∴t=a=
2
2
時(shí),g(t)有最大值,即g(t)max=
1
2
-
2
點(diǎn)評(píng):本題考查函數(shù)的最值與值域,考查學(xué)生的計(jì)算能力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
1
|x|
,g(x)=1+
x+|x|
2
,若f(x)>g(x),則實(shí)數(shù)x的取值范圍是( 。
A、(-∞,-1)∪(0,1)
B、(-∞,-1)∪(0,
-1+
5
2
)
C、(-1,0)∪(
-1+
5
2
,+∞)
D、(-1,0)∪(0,
-1+
5
2
)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
1,x∈Q
0,x∉Q
,則f[f(π)]=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
1-x
ax
+lnx(a>0)

(1)若函數(shù)f(x)在[1,+∞)上為增函數(shù),求實(shí)數(shù)a的取值范圍;
(2)當(dāng)a=1時(shí),求f(x)在[
1
2
,2
]上的最大值和最小值;
(3)當(dāng)a=1時(shí),求證對(duì)任意大于1的正整數(shù)n,lnn>
1
2
+
1
3
+
1
4
+
+
1
n
恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=1+cos2x-2sin2(x-
π
6
),其中x∈R,則下列結(jié)論中正確的是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=1+logax(a>0,a≠1),滿足f(9)=3,則f-1(log92)的值是( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案