設(shè)數(shù)列{an}對一切n∈N*,滿足a1=2,an+1+an=4n+2.試用數(shù)學歸納法證明:an=2n.
考點:數(shù)學歸納法
專題:點列、遞歸數(shù)列與數(shù)學歸納法
分析:利用數(shù)學歸納法,(1)n=1時,易證等式成立;(2)假設(shè)n=k時,ak=2k,去證明n=k+1時結(jié)論也成立即可.
解答: 證明:(1)當n=1時,a1=2=2×1,結(jié)論成立;
(2)假設(shè)n=k時,ak=2k,
則當n=k+1時,ak+1=4k+2-ak=4k+2-2k=2k+2=2(k+1),
即n=k+1時結(jié)論也成立,
綜上所述,對一切n∈N*,an=2n.
點評:本題考查數(shù)學歸納法,著重考查推理論證能力,屬于中檔題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

為了得到函數(shù)y=sin
x
5
(x∈R)的圖象,只需將正弦曲線y=sinx上所有點的( 。
A、橫坐標縮短到原來的
1
5
倍,縱坐標不變
B、橫坐標伸長到原來的5倍,縱坐標不變
C、縱坐標伸長到原來的5倍,橫坐標不變
D、縱坐標縮短到原來的
1
5
倍,橫坐標不變

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x2+1,x∈R.
(1)分別計算f(1)-f(-1),f(2)-f(-2),f(3)-f(-3)的值;
(2)從(1)中,你能得出什么結(jié)論?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在棱長為a的正方體ABCD-A1B1C1D1中,M、N分別為A1A、D1C1的中點,過D、M、N三點的平面與正方體的下底面A1B1C1D1相交與直線l.
(1)畫出直線l的位置;
(2)設(shè)l∩A1B1=P,求PB的長;
(3)求A到l的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在平面直角坐標系xOy中,已知圓P在x軸上截得線段長為2
2
,在y軸上截得線段長為2
3

(Ⅰ)求圓心P的軌跡方程;
(Ⅱ)若P點到直線y=x的距離為
2
2
,求圓P的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在△ABC中,D是AC的中點,E是線段BC延長線上一點,過點A作BE的平行線與線段ED的延長線交于點F,連結(jié)AE、CF.
(1)求證:AF=CE;
(2)若AC=EF,試判斷四邊形AFCE是什么樣的四邊形,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某校100名學生期中考試數(shù)學成績的頻率分布直方圖如圖.其中成績分組區(qū)間如下:
組號第一組第二組第三組第四組第五組
分組[50,60)[60,70)[70,80)[80,90)[90,100)
(Ⅰ)求圖中a的值;
(Ⅱ)現(xiàn)用分層抽樣的方法從第3、4、5組中隨機抽取6名學生進行試卷分析,求第3、4、5組各抽取多少名學生?
(Ⅲ)在(Ⅱ)的前提下,決定在6名學生中隨機抽取2名學生面試,求:第4組至少有一名學生被面試的概率?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=ax2+2bx,g(x)=b+lnx(a∈[-1,2],b∈R,b≠0)
(Ⅰ)求命題A:“函數(shù)f(x)的圖象是開口向上的拋物線”為真命題的概率;
(Ⅱ)若a∈Z,b∈{-2,-1,1,2},寫出所有的數(shù)對(a,b).設(shè)函數(shù)φ(x)=
f(x),x≤1
g(x),x>1
,記“?x1,x2∈[1,+∞),x1≠x2,
φ(x1)-φ(x2)
x1-x2
>0”為事件B,求事件B發(fā)生的概率P(B).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

甲乙兩人進行圍棋比賽,約定先連勝兩局者直接贏得比賽,若賽完5局仍未出現(xiàn)連勝,則判定獲勝局數(shù)多者贏得比賽,假設(shè)每局甲獲勝的概率為
2
3
,乙獲勝的概率為
1
3
,各局比賽結(jié)果相互獨立.
(Ⅰ)求甲在3局以內(nèi)(含3局)贏得比賽的概率;
(Ⅱ)記X為比賽決出勝負時的總局數(shù),求X的分布列和數(shù)學期望.

查看答案和解析>>

同步練習冊答案