若函數(shù)
函數(shù)
,則
的最小值為( )
試題分析:由題意
的最小值,可知直線與曲線上的兩點的距離的平方,函數(shù)
,
,則由題意知
,解得
,此時
.點
到直線
的距離的平方為:
=
,故選D.
練習冊系列答案
相關(guān)習題
科目:高中數(shù)學
來源:不詳
題型:解答題
若函數(shù)
在
上為增函數(shù)(
為常數(shù)),則稱
為區(qū)間
上的“一階比增函數(shù)”,
為
的一階比增區(qū)間.
(1) 若
是
上的“一階比增函數(shù)”,求實數(shù)
的取值范圍;
(2) 若
(
,
為常數(shù)),且
有唯一的零點,求
的“一階比增區(qū)間”;
(3)若
是
上的“一階比增函數(shù)”,求證:
,
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知函數(shù)
在
處存在極值.
(1)求實數(shù)
的值;
(2)函數(shù)
的圖像上存在兩點A,B使得
是以坐標原點O為直角頂點的直角三角形,且斜邊AB的中點在
軸上,求實數(shù)
的取值范圍;
(3)當
時,討論關(guān)于
的方程
的實根個數(shù).
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知函數(shù)
.
(1)當
時,求函數(shù)
的單調(diào)區(qū)間;
(2)若函數(shù)
有兩個極值點
,且
,求證:
;
(Ⅲ)設(shè)
,對于任意
時,總存在
,使
成立,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
下列曲線的所有切線構(gòu)成的集合中,存在無數(shù)對互相垂直的切線的曲線是( )
A.f(x)=ex | B.f(x)=x3 |
C.f(x)=lnx | D.f(x)=sinx |
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
設(shè)f(x)=x2-2x-4ln x,則f′(x)>0的解集為________.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
如圖所示是
的導數(shù)
的圖像,下列四個結(jié)論:
①
在區(qū)間
上是增函數(shù);
②
是
的極小值點;
③
在區(qū)間
上是減函數(shù),在區(qū)間
上是增函數(shù);
④
是
的極小值點.其中正確的結(jié)論是
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
已知函數(shù)
f(
x)=
x3-2
x2+3
m,
x∈[0,+∞),若
f(
x)+5≥0恒成立,則實數(shù)
m的取值范圍是________.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
設(shè)直線x=t,與函數(shù)f(x)=x2,g(x)=ln x的圖象分別交于點M,N,則當|MN|達到最小時t的值為________.
查看答案和解析>>