【題目】(本小題滿分12分)
已知關(guān)于的不等式,其中.
(1)當(dāng)變化時(shí),試求不等式的解集;
(2)對(duì)于不等式的解集,若滿足(其中為整數(shù)集). 試探究集合能否為有限集?若 能,求出使得集合中元素個(gè)數(shù)最少的的所有取值,并用列舉法表示集合;若不能,請(qǐng)說(shuō)明理由.
【答案】⑴當(dāng)時(shí),;當(dāng)且時(shí),;
當(dāng)時(shí),;(不單獨(dú)分析時(shí)的情況不扣分)
當(dāng)時(shí),
⑵
【解析】
解:(Ⅰ)當(dāng)時(shí),; …………………2分
當(dāng)且時(shí),;
當(dāng)時(shí),;(不單獨(dú)分析時(shí)的情況不扣分)………………4分
當(dāng)時(shí),. …………………6分
(Ⅱ)由(1)知:當(dāng)時(shí),集合中的元素的個(gè)數(shù)無(wú)限; …………………8分
當(dāng)時(shí),集合中的元素的個(gè)數(shù)有限,此時(shí)集合為有限集.
因?yàn)?/span>,當(dāng)且僅當(dāng)時(shí)取等號(hào),
所以當(dāng)時(shí),集合的元素個(gè)數(shù)最少. …………………10分
此時(shí),故集合. …………………12分
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知橢圓()的離心率為,以該橢圓上的點(diǎn)和橢圓的左、右焦點(diǎn),為頂點(diǎn)的三角形的周長(zhǎng)為,一等軸雙曲線的頂點(diǎn)是該橢圓的焦點(diǎn),設(shè)為該雙曲線上異于頂點(diǎn)的任一點(diǎn),直線和與橢圓的交點(diǎn)分別為、和、.
(1)求橢圓和雙曲線的標(biāo)準(zhǔn)方程;
(2)設(shè)直線、的斜率分別為、,證明為定值;
(3)是否存在常數(shù),使得恒成立?若存在,求的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】右圖是一個(gè)幾何體的平面展開(kāi)圖,其中ABCD為
正方形, E、F分別為PA、PD的中點(diǎn),在此幾何體中,
給出下面四個(gè)結(jié)論:
①直線BE與直線CF異面;②直線BE與直線AF異面;
③直線EF//平面PBC; ④平面BCE⊥平面PAD.
其中正確結(jié)論的個(gè)數(shù)是
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=x﹣ ﹣2lnx,a∈R.
(1)討論函數(shù)f(x)的單調(diào)性;
(2)若函數(shù)f(x)有兩個(gè)極值點(diǎn)x1 , x2 , 且x1<x2 , 求a的取值范圍;
(3)在(2)的條件下,證明:f(x2)<x2﹣1.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】理科競(jìng)賽小組有9名女生、12名男生,從中隨機(jī)抽取一個(gè)容量為7的樣本進(jìn)行分析.
(Ⅰ)如果按照性別比例分層抽樣,可以得到多少個(gè)不同的樣本?(寫(xiě)出算式即可)
(Ⅱ)如果隨機(jī)抽取的7名同學(xué)的物理、化學(xué)成績(jī)(單位:分)對(duì)應(yīng)如表:
學(xué)生序號(hào) | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
物理成績(jī) | 65 | 70 | 75 | 81 | 85 | 87 | 93 |
化學(xué)成績(jī) | 72 | 68 | 80 | 85 | 90 | 86 | 91 |
規(guī)定85分以上(包括85份)為優(yōu)秀,從這7名同學(xué)中再抽取3名同學(xué),記這3名同學(xué)中物理和化學(xué)成績(jī)均為優(yōu)秀的人數(shù)為X,求隨機(jī)變量X的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】《九章算術(shù)》第三章“衰分”介紹比例分配問(wèn)題:“衰分”是按比例遞減分配的意思,通常稱遞減的比例(百分比)為“衰分比”.如:甲、乙、丙、丁衰分得100,60,36,21.6個(gè)單位,遞減的比例為40%,今共有糧m(m>0)石,按甲、乙、丙、丁的順序進(jìn)行“衰分”,已知丙衰分得80石,乙、丁衰分所得的和為164石,則“衰分比”與m的值分別為( )
A.20% 369
B.80% 369
C.40% 360
D.60% 365
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,三角形ABC和梯形ACEF所在的平面互相垂直,AB⊥BC,AF⊥AC,AF 2CE,G是線段BF上一點(diǎn),AB=AF=BC.
(Ⅰ)若EG∥平面ABC,求 的值;
(Ⅱ)求二面角A﹣BF﹣E的大小的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,點(diǎn)O為數(shù)軸的原點(diǎn),A,B,M為數(shù)軸上三點(diǎn),C為線段OM上的動(dòng)點(diǎn).設(shè)x表示點(diǎn)C與原點(diǎn)的距離,y表示點(diǎn)C到點(diǎn)A的距離的4倍與點(diǎn)C到點(diǎn)B的距離的6倍之和.
(1)將y表示為x的函數(shù);
(2)要使y的值不超過(guò)70,實(shí)數(shù)x應(yīng)該在什么范圍內(nèi)取值?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】[選修4-4:坐標(biāo)系與參數(shù)方程]
在直角坐標(biāo)系xOy中,雙曲線E的參數(shù)方程為 (θ為參數(shù)),設(shè)E的右焦點(diǎn)為F,經(jīng)過(guò)第一象限的漸進(jìn)線為l.以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系.
(1)求直線l的極坐標(biāo)方程;
(2)設(shè)過(guò)F與l垂直的直線與y軸相交于點(diǎn)A,P是l上異于原點(diǎn)O的點(diǎn),當(dāng)A,O,F(xiàn),P四點(diǎn)在同一圓上時(shí),求這個(gè)圓的極坐標(biāo)方程及點(diǎn)P的極坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com