橢圓+=1(a>b>0)的一個(gè)頂點(diǎn)為A(0,2),離心率e=.
(1)求橢圓的方程;
(2)直線l:y=kx-2(k≠0)與橢圓相交于不同的兩點(diǎn)M、N,且滿足=,·=0,求直線l的方程.
(1)橢圓方程為+=1.
(2)直線方程為y=±x-2.
【解析】解:(1)設(shè)c=,依題意
得即
∴a2=3b2=12,即橢圓方程為+=1.
(2)∵=,·=0,∴AP⊥MN,
且點(diǎn)P是線段MN的中點(diǎn),由消去y得x2+3(kx-2)2=12,
即(1+3k2)x2-12kx=0,(*)
由k≠0,得方程(*)中Δ=(-12k)2=144k2>0,顯然方程(*)有兩個(gè)不相等的實(shí)數(shù)根.
設(shè)M(x1,y1)、N(x2,y2),線段MN的中點(diǎn)P(x0,y0),
則x1+x2=,∴x0==.
∴y0=kx0-2==,即P.
∵k≠0,∴直線AP的斜率為
k 1==. 由MN⊥AP,得·k=-1,
∴2+2+6k2=6,解得k=±, 故直線方程為y=±x-2.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
橢圓+=1(a>b>0)的兩個(gè)焦點(diǎn)是F1(-c,0)、F2(c,0),M是橢圓上一點(diǎn),且F1M·=0,則離心率e的取值范圍是________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知橢圓+=1(a>b>0)的右焦點(diǎn)為F(3,0),過點(diǎn)F的直線交橢圓于A、B兩點(diǎn)。若AB的中點(diǎn)坐標(biāo)為(1,-1),則E的方程為 ( )
A、+=1 B、+=1 C、+=1 D、+=1
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015屆遼寧沈陽二中高二12月月考文科數(shù)學(xué)試卷(解析版) 題型:填空題
已知F1、F2是橢圓+=1(a>b>0)的左右焦點(diǎn),P是橢圓上一點(diǎn),∠F1PF2=90°,求橢圓離心率的最小值為
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年湖南省十二校高三第一次聯(lián)考數(shù)學(xué)文卷 題型:解答題
( (本小題滿分13分)
已知橢圓+=1(a>b>0)的一個(gè)焦點(diǎn)坐標(biāo)為(,0),短軸一頂點(diǎn)與兩焦點(diǎn)連線夾角為120°.
(1)求橢圓的方程;
(2)設(shè)直線l與橢圓相交于不同的兩點(diǎn)A、B,已知點(diǎn)A的坐標(biāo)為(-a,0),點(diǎn)Q(0,m)在線段AB的垂直平分線上且·≤4,求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013屆江西省高二第二次月考文科數(shù)學(xué) 題型:選擇題
已知橢圓+=1(a>b>0)的左焦點(diǎn)為F,右頂點(diǎn)為A,點(diǎn)B在橢圓上,且BF⊥x軸,直線AB交y軸于點(diǎn)P.若=2,則橢圓的離心率是( 。
A. B. C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com