已知等比數(shù)列{an}滿足a1+a4=18,a2a3=32,且公比q>1.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求該數(shù)列的前5項(xiàng)和S5
分析:(1)依題意,利用等比數(shù)列的性質(zhì)可求得等比數(shù)列{an}的首項(xiàng)a1與公比q,從而可得數(shù)列{an}的通項(xiàng)公式;
(2)由an=2n,可求得數(shù)列的前5項(xiàng)和S5
解答:解:(1)∵等比數(shù)列{an}滿足a1+a4=18,a2a3=32,
∴a1a4=32,
∴a1與a4是方程x2-18x+32=0的兩根,
解得:x=2或x=16;
又公比q>1,
∴a1=2,a4=16,
∴q3=
a4
a1
=8,
∴q=2,
∴an=2×2n-1=2n
(2)∵an=2n
∴該數(shù)列的前5項(xiàng)和S5=2+22+23+24+25=62.
點(diǎn)評(píng):本題考查等比數(shù)列的通項(xiàng)公式與等比數(shù)列的前n項(xiàng)和,考查方程思想與運(yùn)算能力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

5、已知等比數(shù)列{an}的前n項(xiàng)和為Sn,公比q≠1,若S5=3a4+1,S4=2a3+1,則q等于(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知等比數(shù)列{an}中,a2=9,a5=243.
(1)求{an}的通項(xiàng)公式;
(2)令bn=log3an,求數(shù)列{
1bnbn+1
}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知等比數(shù)列{an}滿足a1•a7=3a3a4,則數(shù)列{an}的公比q=
3
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知等比數(shù)列{an}中a1=64,公比q≠1,且a2,a3,a4分別為某等差數(shù)列的第5項(xiàng),第3項(xiàng),第2項(xiàng).
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)bn=log2an,求數(shù)列{|bn|}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知等比數(shù)列{an}中,a3+a6=36,a4+a7=18.若an=
12
,則n=
9
9

查看答案和解析>>

同步練習(xí)冊(cè)答案
闂傚倸鍊搁崐鎼佸磹閹间礁纾归柣鎴eГ閸ゅ嫰鏌ら崫銉︽毄濞寸姵鑹鹃埞鎴炲箠闁稿﹥顨嗛幈銊р偓闈涙啞瀹曞弶鎱ㄥ璇蹭壕闂佺粯渚楅崰娑氱不濞戞ǚ妲堟繛鍡樺姈椤忕喖姊绘担鑺ョ《闁革綇绠撻獮蹇涙晸閿燂拷 闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬儳缍婇弻鐔兼⒒鐎靛壊妲紒鐐礃椤曆囧煘閹达附鍋愰柛娆忣槹閹瑧绱撴担鍝勵€岄柛銊ョ埣瀵濡搁埡鍌氫簽闂佺ǹ鏈粙鎴︻敂閿燂拷