分析 直線y=k(x-2)+4過點P(2,4),求出兩個特殊位置直線的斜率,可得結(jié)論.
解答 解:由題意,直線y=k(x-2)+4過定點P(2,4),
曲線y=$\sqrt{4-{x}^{2}}$ 表示圓心為(0,0),半徑r=2的圓的上半部分.
當(dāng)直線過點(2,0)時,斜率k不存在.
當(dāng)直線與圓相切時,圓心到直線的距離$\frac{|4-2k|}{\sqrt{1+{k}^{2}}}$=2
解得,k=$\frac{3}{4}$.
∴當(dāng)直線y=k(x-2)+4和曲線y=$\sqrt{4-{x}^{2}}$ 有公共點時,實數(shù)k的取值范圍是$[{\frac{3}{4},+∞})$,
故答案為$[{\frac{3}{4},+∞})$.
點評 本題考查直線與圓的位置關(guān)系,圓的切線方程的應(yīng)用,考查數(shù)形結(jié)合以及計算能力.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | $\sqrt{3}$ | C. | $\sqrt{2}$ | D. | 5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -$\frac{7}{8}$ | B. | $\frac{7}{8}$ | C. | -$\frac{23}{25}$ | D. | $\frac{23}{25}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (2,1) | B. | (-2,-1) | C. | $({\frac{{2\sqrt{5}}}{5},\frac{{\sqrt{5}}}{5}})$ | D. | $({-\frac{{2\sqrt{5}}}{5},-\frac{{\sqrt{5}}}{5}})$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | -4 | C. | 4 | D. | -3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com