(江蘇卷18)設(shè)平面直角坐標(biāo)系中,設(shè)二次函數(shù)的圖象與坐標(biāo)軸有三個(gè)交點(diǎn),經(jīng)過(guò)這三個(gè)交點(diǎn)的圓記為C。

求實(shí)數(shù)的取值范圍;

求圓的方程;問(wèn)圓是否經(jīng)過(guò)某定點(diǎn)(其坐標(biāo)與無(wú)關(guān))?請(qǐng)證明你的結(jié)論

解:本小題主要考查二次函數(shù)圖象與性質(zhì)、圓的方程的求法.

(Ⅰ)令=0,得拋物線(xiàn)與軸交點(diǎn)是(0,b);

,由題意b≠0 且Δ>0,解得b<1 且b≠0.

(Ⅱ)設(shè)所求圓的一般方程為

=0 得這與=0 是同一個(gè)方程,故D=2,F(xiàn)=

=0 得=0,此方程有一個(gè)根為b,代入得出E=―b―1.

所以圓C 的方程為.

(Ⅲ)圓C 必過(guò)定點(diǎn),證明如下:

假設(shè)圓C過(guò)定點(diǎn) ,將該點(diǎn)的坐標(biāo)代入圓C的方程,

并變形為         (*)

為使(*)式對(duì)所有滿(mǎn)足都成立,必須有,

結(jié)合(*)式得

,解得

經(jīng)檢驗(yàn)知,點(diǎn)均在圓C上,因此圓C 過(guò)定點(diǎn)。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2009江蘇卷18)(本小題滿(mǎn)分16分)

在平面直角坐標(biāo)系中,已知圓和圓.

(1)若直線(xiàn)過(guò)點(diǎn),且被圓截得的弦長(zhǎng)為,求直線(xiàn)的方程;

(2)設(shè)P為平面上的點(diǎn),滿(mǎn)足:存在過(guò)點(diǎn)P的無(wú)窮多對(duì)互相垂直的直線(xiàn),它們分別與圓和圓相交,且直線(xiàn)被圓截得的弦長(zhǎng)與直線(xiàn)被圓截得的弦長(zhǎng)相等,試求所有滿(mǎn)足條件的點(diǎn)P的坐標(biāo)。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2010江蘇卷)18、(本小題滿(mǎn)分16分)

在平面直角坐標(biāo)系中,如圖,已知橢圓的左、右頂點(diǎn)為A、B,右焦點(diǎn)為F。設(shè)過(guò)點(diǎn)T()的直線(xiàn)TA、TB與橢圓分別交于點(diǎn)M、,其中m>0,。

(1)設(shè)動(dòng)點(diǎn)P滿(mǎn)足,求點(diǎn)P的軌跡;

(2)設(shè),求點(diǎn)T的坐標(biāo);

(3)設(shè),求證:直線(xiàn)MN必過(guò)x軸上的一定點(diǎn)(其坐標(biāo)與m無(wú)關(guān))。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(江蘇卷18)設(shè)平面直角坐標(biāo)系中,設(shè)二次函數(shù)的圖象與坐標(biāo)軸有三個(gè)交點(diǎn),經(jīng)過(guò)這三個(gè)交點(diǎn)的圓記為C。

求實(shí)數(shù)的取值范圍;

求圓的方程;問(wèn)圓是否經(jīng)過(guò)某定點(diǎn)(其坐標(biāo)與無(wú)關(guān))?請(qǐng)證明你的結(jié)論

查看答案和解析>>

同步練習(xí)冊(cè)答案