在△ABC中,角A、B、C的對邊分別為a,b,c,若S表示△ABC的面積,若acosB+bcosA=csinC,,則∠B=   
【答案】分析:先利用正弦定理把acosB+bcosA=csinC中的邊換成角的正弦,利用兩角和公式化簡整理可求得C=90°,進而可利用兩直角邊表示出三角形的面積,利用勾股定理化簡整理可求得a=b,推斷出三角形為直角等腰三角形,進而求得B.
解答:解:由正弦定理可知a=2rsinA,b=2rsinB,c=2rsinC,
∵acosB+bcosA=csinC,
∴sinAcosB+sinBcosA=sinCsinC,即sin(A+B)=sin2C,
∵A+B=π-c
∴sin(A+B)=sinC=sin2C,
∵0<C<π
∴sinC≠0
∴sinC=1
∴C=90°
∴S==
∵b2+a2=c2,
=b2=
∴a=b
∴△ABC為等腰直角三角形
∴∠B=45°
故答案為45°
點評:本題主要考查了正弦定理的應用,兩角和公式的化簡求值,勾股定理的應用.考查了學生運用所學知識解決問題的能力.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

在△ABC中,角A、B、C所對的邊分別為a,b,c,若b2+c2-a2=
3
bc
,且b=
3
a
,則下列關系一定不成立的是(  )
A、a=c
B、b=c
C、2a=c
D、a2+b2=c2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,角A,B,C的對邊分別為a,b,c,已知B=60°,cos(B+C)=-
1114

(1)求cosC的值;
(2)若bcosC+acosB=5,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,角A,B,C的對邊分別是a,b,c,且bsinA=
3
acosB

(1)求角B的大;
(2)若a=4,c=3,D為BC的中點,求△ABC的面積及AD的長度.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,角A、B、C所對的邊分別為a、b、c并且滿足
b
a
=
sinB
cosA

(1)求∠A的值;
(2)求用角B表示
2
sinB-cosC
,并求它的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,角A,B,C所對邊的長分別為a,b,c,且a=
5
,b=3,sinC=2sinA
,則sinA=
 

查看答案和解析>>

同步練習冊答案