【題目】如圖,四面體,,,.

1)若中點(diǎn)是,求證:;

2)若是線段上的動(dòng)點(diǎn),是面上的動(dòng)點(diǎn),且線段,的中點(diǎn)是,求動(dòng)點(diǎn)的軌跡與四面體圍成的較小的幾何體的體積.

【答案】1)見解析;(2)動(dòng)點(diǎn)的軌跡是以為球心,半徑為的球面,體積.

【解析】

1)證明出平面可得出,再由三線合一得出,利用直線與平面垂直的判定定理可得出平面;

2)證明平面,可得出,由直角三角形的性質(zhì)可得出,可知?jiǎng)狱c(diǎn)的軌跡是以為球心,半徑的球面,計(jì)算出的大小,可得出所求幾何體占球的比例,由此可得出所求幾何體的體積.

1,,平面,

平面.

,的中點(diǎn),.

,因此,平面;

2)如下圖所示:

,,,

平面,

平面,,,則.

中,為斜邊的中點(diǎn),則.

由(1)知,平面,且,.

所以,點(diǎn)的軌跡是以為球心,半徑為的球面.

中,,,則

,所以,動(dòng)點(diǎn)的軌跡與四面體圍成的較小的幾何體為球體的.

因此,所求幾何體的體積為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓 經(jīng)過橢圓 的左右焦點(diǎn),且與橢圓在第一象限的交點(diǎn)為,且三點(diǎn)共線,直線交橢圓, 兩點(diǎn),且).

(1)求橢圓的方程;

(2)當(dāng)三角形的面積取得最大值時(shí),求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某射擊小組有甲、乙、丙三名射手,已知甲擊中目標(biāo)的概率是,甲、丙二人都沒有擊中目標(biāo)的概率是,乙、丙二人都擊中目標(biāo)的概率是.甲乙丙是否擊中目標(biāo)相互獨(dú)立.

1)求乙、丙二人各自擊中目標(biāo)的概率;

2)設(shè)乙、丙二人中擊中目標(biāo)的人數(shù)為X,求X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左,右焦點(diǎn)分別為,點(diǎn)為橢圓上任意一點(diǎn),點(diǎn)關(guān)于原點(diǎn)的對(duì)稱點(diǎn)為點(diǎn),有,且當(dāng)的面積最大時(shí)為等邊三角形.

1)求橢圓的標(biāo)準(zhǔn)方程;

2)與圓相切的直線交橢圓,兩點(diǎn),若橢圓上存在點(diǎn)滿足,求四邊形面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知雙曲線的左右焦點(diǎn)為為它的中心,為雙曲線右支上的一點(diǎn),的內(nèi)切圓圓心為,且圓軸相切于點(diǎn),過作直線的垂線,垂足為,若雙曲線的離心率為,則( )

A.B.C.D.關(guān)系不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】《中華人民共和國(guó)道路交通安全法》第47條的相關(guān)規(guī)定:機(jī)動(dòng)車行經(jīng)人行橫道時(shí),應(yīng)當(dāng)減速慢行;遇行人正在通過人行橫道,應(yīng)當(dāng)停車讓行,俗稱禮讓斑馬線,《中華人民共和國(guó)道路交通安全法》第90條規(guī)定:對(duì)不禮讓行人的駕駛員處以扣3分,罰款50元的處罰.

1)交警從這5個(gè)月內(nèi)通過該路口的駕駛員中隨機(jī)抽查了50人,調(diào)查駕駛員不禮讓斑馬線行為與駕齡的關(guān)系,得到如下列聯(lián)表:能否據(jù)此判斷有97.5%的把握認(rèn)為禮讓斑馬線行為與駕齡有關(guān)?

不禮讓斑馬線

禮讓斑馬線

合計(jì)

駕齡不超過1

22

8

30

駕齡1年以上

8

12

20

合計(jì)

30

20

50

2)下圖是某市一主干路口監(jiān)控設(shè)備所抓拍的5個(gè)月內(nèi)駕駛員不禮讓斑馬線行為的折線圖:

請(qǐng)結(jié)合圖形和所給數(shù)據(jù)求違章駕駛員人數(shù)y與月份x之間的回歸直線方程,并預(yù)測(cè)該路口7月份的不禮讓斑馬線違章駕駛員人數(shù).

附注:參考數(shù)據(jù):

參考公式:,(其中

0.150

0.100

0.050

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在所有棱長(zhǎng)都相等的三棱錐中,D,E,F分別是AB,BC,CA的中點(diǎn),下列四個(gè)命題:

1平面PDF;(2平面

3)平面平面;(4)平面平面

其中正確命題的序號(hào)為________

A.2)(3B.1)(3C.2)(4D.1)(4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,一個(gè)粒子從原點(diǎn)出發(fā),在第一象限和兩坐標(biāo)軸正半軸上運(yùn)動(dòng),在第一秒時(shí)它從原點(diǎn)運(yùn)動(dòng)到點(diǎn),接著它按圖所示在軸、軸的垂直方向上來回運(yùn)動(dòng),且每秒移動(dòng)一個(gè)單位長(zhǎng)度,那么,在2018秒時(shí),這個(gè)粒子所處的位置在點(diǎn)______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)討論的單調(diào)性;

(2)若存在兩個(gè)極值點(diǎn),證明:

查看答案和解析>>

同步練習(xí)冊(cè)答案