已知各項均為正數(shù)的數(shù)列{an}的前n項和Sn滿足S1>1,且6Sn=(an+1)(an+2),n∈N*
(I)求數(shù)列{an}的通項公式;
(II)設數(shù)列{bn}滿足數(shù)學公式,記Tn為數(shù)列{bn}的前n項和.求證:2Tn+1<log2(an+3)

(I)解:n=1時,6a1=a12+3a1+2,且a1>1,解得a1=2.
n≥2時,6Sn=an2+3an+2,6Sn-1=an-12+3an-1+2,兩式相減得(an+an-1)(an-an-1-3)=0,
∵an+an-1>0,
∴an-an-1=3,
∴{an}為等差數(shù)列,
∵a1=2,
∴an=3n-1.
(II)證明:∵數(shù)列{bn}滿足,

∴Tn=b1+b2+…+bn=
要證2Tn+1<log2(an+3),即證<log2(an+3)
即證
即證
,

∵cn>0,∴cn+1<cn,
∴{cn}是單調遞減數(shù)列


故2Tn+1<log2(an+3).
分析:(I)n=1時,6a1=a12+3a1+2,且a1>1,解得a1=2.n≥2時,6Sn=an2+3an+2,6Sn-1=an-12+3an-1+2,兩式相減得(an+an-1)(an-an-1-3)=0由此能求出an
(II)根據(jù)數(shù)列{bn}滿足,可得,從而Tn=b1+b2+…+bn=,利用分析法證明.要證2Tn+1<log2(an+3),即證<log2(an+3),即證,構造函數(shù),可得{cn}是單調遞減數(shù)列,即可證出結論.
點評:本題考查數(shù)列的綜合應用,解題時要認真審題,仔細解答,注意挖掘題設中的隱含條件,合理地進行等價轉化.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知各項均為正數(shù)的數(shù)列{an}滿足an+12=2an2+anan+1,a2+a4=2a3+4,其中n∈N*
(Ⅰ)求數(shù){an}的通項公式;
(Ⅱ)設數(shù){bn}的前n項和Tn,令bn=an2,其中n∈N*,試比較
Tn+1+12
4Tn
2log2bn+1+2
2log2bn-1
的大小,并加以證明.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知各項均為正數(shù)的數(shù)列{an}滿足an+12=2an2+anan+1,a2+a4=2a3+4,其中n∈N*
(Ⅰ)求數(shù){an}的通項公式;
(Ⅱ)設數(shù){bn}的前n項和Tn,令bn=an2,其中n∈N*,試比較數(shù)學公式數(shù)學公式的大小,并加以證明.

查看答案和解析>>

科目:高中數(shù)學 來源:青島二模 題型:解答題

已知各項均為正數(shù)的數(shù)列{an}滿足an+12=2an2+anan+1,a2+a4=2a3+4,其中n∈N*
(Ⅰ)求數(shù){an}的通項公式;
(Ⅱ)設數(shù){bn}的前n項和Tn,令bn=an2,其中n∈N*,試比較
Tn+1+12
4Tn
2log2bn+1+2
2log2bn-1
的大小,并加以證明.

查看答案和解析>>

科目:高中數(shù)學 來源:《第2章 數(shù)列》、《第3章 不等式》2010年單元測試卷(陳經綸中學)(解析版) 題型:解答題

已知各項均為正數(shù)的數(shù)列{an}滿足an+12=2an2+anan+1,a2+a4=2a3+4,其中n∈N*
(Ⅰ)求數(shù){an}的通項公式;
(Ⅱ)設數(shù){bn}的前n項和Tn,令bn=an2,其中n∈N*,試比較的大小,并加以證明.

查看答案和解析>>

科目:高中數(shù)學 來源:2012年高考復習方案配套課標版月考數(shù)學試卷(二)(解析版) 題型:解答題

已知各項均為正數(shù)的數(shù)列{an}滿足an+12=2an2+anan+1,a2+a4=2a3+4,其中n∈N*
(Ⅰ)求數(shù){an}的通項公式;
(Ⅱ)設數(shù){bn}的前n項和Tn,令bn=an2,其中n∈N*,試比較的大小,并加以證明.

查看答案和解析>>

同步練習冊答案