【題目】漢字聽寫大會不斷創(chuàng)收視新高,為了避免“書寫危機”,弘揚傳統(tǒng)文化,某市大約10萬名市民進行了漢字聽寫測試現(xiàn)從某社區(qū)居民中隨機抽取50名市民的聽寫測試情況,發(fā)現(xiàn)被測試市民正確書寫漢字的個數(shù)全部在160到184之間,將測試結果按如下方式分成六組:第1組,第2組,,第6組,如圖是按上述分組方法得到的頻率分布直方圖.
若電視臺記者要從抽取的市民中選1人進行采訪,求被采訪人恰好在第2組或第6組的概率;
試估計該市市民正確書寫漢字的個數(shù)的平均數(shù)與中位數(shù);
已知第4組市民中有3名男性,組織方要從第4組中隨機抽取2名市民組成弘揚傳統(tǒng)文化宣傳隊,求至少有1名女性市民的概率.
【答案】(1)0.32(2)平均數(shù)168.56;中位數(shù):168.25(3)
【解析】
利用頻率分布直方圖能求出被采訪人恰好在第2組或第6組的概率;利用頻率分布直方圖能求出平均數(shù)和中位數(shù);共人,其中男生3人,設為a,b,c,女生三人,設為d,e,f,利用列舉法能求出至少有1名女性市民的概率.
被采訪人恰好在第2組或第6組的概率
平均數(shù)
設中位數(shù)為x,則
中位數(shù)
共人,其中男生3人,設為a,b,c,女生三人,設為d,e,
則任選2人,可能為,,,,,,,,,,,,,,,共15種,
其中兩個全是男生的有,,,共3種情況,
設事件A:至少有1名女性,
則至少有1名女性市民的概率
科目:高中數(shù)學 來源: 題型:
【題目】設正項數(shù)列的前項和為,且滿足:,,.
(Ⅰ)求數(shù)列的通項公式;
(Ⅱ)若正項等比數(shù)列滿足,,且,數(shù)列的前項和為,若對任意,均有恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某運動制衣品牌為了成衣尺寸更精準,現(xiàn)選擇15名志愿者,對其身高和臂展進行測量(單位:厘米),左圖為選取的15名志愿者身高與臂展的折線圖,右圖為身高與臂展所對應的散點圖,并求得其回歸方程為,以下結論中不正確的為
A. 15名志愿者身高的極差小于臂展的極差
B. 15名志愿者身高和臂展成正相關關系,
C. 可估計身高為190厘米的人臂展大約為189.65厘米,
D. 身高相差10厘米的兩人臂展都相差11.6厘米,
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設橢圓方程為,離心率為, 是橢圓的兩個焦點, 為橢圓上一點且, 的面積為.
(1)求橢圓的方程;
(2)已知點,直線不經過點且與橢圓交于兩點,若直線與直線的斜率之和為1,證明直線過定點,并求出該定點.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐中,底面為菱形,平面平面, ,點在棱上.
(Ⅰ)求證:直線平面;
(Ⅱ)若平面,求證: ;
(Ⅲ)是否存在點,使得四面體的體積等于四面體的?若存在,求出的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=x2ex﹣b,其中b∈R.
(Ⅰ)證明:對于任意x1,x2∈(﹣∞,0],都有f(x1)﹣f(x2);
(Ⅱ)討論函數(shù)f(x)的零點個數(shù)(結論不需要證明).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某城市為鼓勵人們綠色出行,乘坐地鐵,地鐵公司決定按照乘客經過地鐵站的數(shù)量實施分段優(yōu)惠政策,不超過站的地鐵票價如下表:
乘坐站數(shù) | |||
票價(元) |
現(xiàn)有甲、乙兩位乘客同時從起點乘坐同一輛地鐵,已知他們乘坐地鐵都不超過站.甲、乙乘坐不超過站的概率分別為, ;甲、乙乘坐超過站的概率分別為, .
(1)求甲、乙兩人付費相同的概率;
(2)設甲、乙兩人所付費用之和為隨機變量,求的分布列和數(shù)學期望.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com