已知橢圓C以雙曲線
x2
3
-y2=1
的焦點為頂點,以雙曲線的頂點為焦點.
(1)求橢圓C的方程;
(2)若直線l:y=kx+m與橢圓C相交于點M,N兩點(M,N不是左右頂點),且以線段MN為直徑的圓過橢圓C左頂點A,求證:直線l過定點,并求出該定點的坐標.
(1)由雙曲線
x2
3
-y2=1
,得c2=3+1=4,∴其焦點為(-2,0),(2,0).頂點為(-
3
,0
),(
3
,0
).
則所求橢圓的半長軸a=2,半焦距c=
3
,b2=a2-c2=4-3=1.
∴橢圓C的方程為:
x2
4
+y2=1

(2)證明:設M(x1,y1),N(x2,y2),
聯(lián)立方程組
y=kx+m
x2
4
+y2=1
⇒(1+4k2)x2+8kmx+4m2-4=0
,
x1+x2=
-8km
1+4k2
x1x2=
4m2-4
1+4k2

∵以MN為直徑的圓過點A(-2,0),∴
AM
AN
=0
,
即x1x2+2(x1+x2)+4+y1y2=0,整理得5m2-16km+12k2=0,
m=
6
5
k
或m=2k,滿足△>0,
若m=2k,則直線l恒過定點A(-2,0),不合題意;
m=
6
5
k
,則直線l恒過定點(-
6
5
,0)

∴則直線l恒過定點(-
6
5
,0)
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

拋物線y2=2px(p>0)上縱坐標為-p的點M到焦點的距離為2.
(Ⅰ)求p的值;
(Ⅱ)如圖,A,B,C為拋物線上三點,且線段MA,MB,MC與x軸交點的橫坐標依次組成公差為1的等差數(shù)列,若△AMB的面積是△BMC面積的
1
2
,求直線MB的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,過拋物線y2=2px(p>0)的頂點作兩條互相垂直的弦OA、OB.
(1)設OA的斜率為k,試用k表示點A、B的坐標;
(2)求弦AB中點M的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知圓C過點M(0,-2),N(3,1),且圓心C在直線x+2y+1=0上.
(Ⅰ)求圓C的方程;
(Ⅱ)問是否存在滿足以下兩個條件的直線l:①斜率為1;②直線被圓C截得的弦為AB,以AB為直徑的圓C1過原點.若存在這樣的直線,請求出其方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

設集合A={(x,y)|y=2x-1,x∈N*},B={(x,y)|y=ax2-ax+a,x∈N*},問是否存在非零整數(shù)a,使A∩B≠∅?若存在,請求出a的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知a是實數(shù),直線2x-y+5=0與直線x-y+a+4=0的交點不在橢圓x2+2y2=11上,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知拋物線C的方程為:y2=4x,直線l過(-2,1)且斜率為k≥0,當k為何值時,直線l與拋物線C(1)只有一個公共點,(2)有兩個公共點.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,設點F1(-c,0)、F2(c,0)分別是橢圓C:
x2
a2
+y2=1(a>1)
的左、右焦點,P為橢圓C上任意一點,且
PF1
PF2
最小值為0.
(1)求橢圓C的方程;
(2)設直線l1:y=kx+m,l2:y=kx+n,若l1、l2均與橢圓C相切,證明:m+n=0;
(3)在(2)的條件下,試探究在x軸上是否存在定點B,點B到l1,l2的距離之積恒為1?若存在,請求出點B坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

如圖,銳角三角形ABC的高CD和高BE相交于O,則與△DOB相似的三角形個數(shù)是(  )
A.1B.2C.3D.4

查看答案和解析>>

同步練習冊答案