【題目】若函數(shù)f(x)=x2﹣2|x|+m有兩個相異零點,則實數(shù)m的取值范圍是

【答案】m=1或m<0
【解析】解:函數(shù)g(x)=x2﹣2|x|的圖象,如圖所示, ∵函數(shù)f(x)=x2﹣2|x|+m有兩個相異零點,
∴﹣m=﹣1或﹣m>0,
∴m=1或m<0.
所以答案是m=1或m<0.

【考點精析】解答此題的關(guān)鍵在于理解函數(shù)的零點與方程根的關(guān)系的相關(guān)知識,掌握二次函數(shù)的零點:(1)△>0,方程 有兩不等實根,二次函數(shù)的圖象與 軸有兩個交點,二次函數(shù)有兩個零點;(2)△=0,方程 有兩相等實根(二重根),二次函數(shù)的圖象與 軸有一個交點,二次函數(shù)有一個二重零點或二階零點;(3)△<0,方程 無實根,二次函數(shù)的圖象與 軸無交點,二次函數(shù)無零點.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=Asin(ωx+θ)( A>0,ω>0,|θ|< )的最小正周期為π,且圖象上有一個最低點為M( ,﹣3).
(1)求f(x)的解析式;
(2)求函數(shù)f(x)在[0,π]的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=2cosxsin(x﹣ )+
(1)求函數(shù)f(x)的對稱軸方程;
(2)若方程sin2x+2|f(x+ )|﹣m+1=0在x∈[﹣ , ]上有三個實數(shù)解,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列四個命題中正確的有
①函數(shù)y= 的定義域是{x|x≠0};
②lg =lg(x﹣2)的解集為{3};
②31x﹣2=0的解集為{x|x=1﹣log32};
④lg(x﹣1)<1的解集是{x|x<11}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=lg(2+x)+lg(2﹣x).

(1)求函數(shù)f(x)的定義域并判斷函數(shù)f(x)的奇偶性;

(2)記函數(shù)g(x)= +3x,求函數(shù)g(x)的值域;

(3)若不等式 f(x)m有解,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)等比數(shù)列的公比為,前項和.

(1)求的取值范圍;

(2)設(shè),記的前項和為,試比較的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠ACB,AC3, BC2P是△ABC內(nèi)的一點.

(1)若P是等腰直角三角形PBC的直角頂點,求PA的長;

(2)若∠BPC,設(shè)∠PCBθ,求△PBC的面積S(θ)的解析式,并求S(θ)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x﹣
(1)用函數(shù)單調(diào)性的定義證明:函數(shù)f(x)在區(qū)間(0,+∞)上為增函數(shù);
(2)方程2tf(4t)﹣mf(2t)=0,當(dāng)t∈[1,2]時,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) ,
(1)求函數(shù)的定義域;
(2)求 的值.

查看答案和解析>>

同步練習(xí)冊答案