若-<α<0,則點(diǎn)P(tanα,cosα)位于          (  )

A.第一象限                             B.第二象限

C.第三象限                             D.第四象限

 

【答案】

B

【解析】

試題分析:∵-<α<0,∴tanα<0,cosα>0,∴點(diǎn)P(tanα,cosα)位于第二象限,故選B

考點(diǎn):本題考查了三角函數(shù)值的符號(hào)

點(diǎn)評(píng):熟練掌握三角函數(shù)的定義及三角函數(shù)的值的求法是解決此類問題的關(guān)鍵,屬基礎(chǔ)題

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

橢圓的中心在坐標(biāo)原點(diǎn)O,右焦點(diǎn)F(c,0)到相應(yīng)準(zhǔn)線的距離為1,傾斜角為45°的直線交橢圓于A,B兩點(diǎn).設(shè)AB中點(diǎn)為M,直線AB與OM的夾角為a.

   (1)用半焦距c表示橢圓的方程及;

   (2)若2<<3,求橢圓率心率e的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線+=1,若1<<2,則實(shí)數(shù)m的取值范圍為_______________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年人教版高考數(shù)學(xué)文科二輪專題復(fù)習(xí)提分訓(xùn)練5練習(xí)卷(解析版) 題型:填空題

若二次函數(shù)f(x)=ax2+bx+c(a0)的圖象和直線y=x無交點(diǎn),現(xiàn)有下列結(jié)論:①方程f(f(x))=x一定沒有實(shí)數(shù)根;

②若a>0,則不等式f(f(x))>x對(duì)一切實(shí)數(shù)x都成立;

③若a<0,則必存在實(shí)數(shù)x0,使f(f(x0))>x0;

④若a+b+c=0,則不等式f(f(x))<x對(duì)一切實(shí)數(shù)都成立;

⑤函數(shù)g(x)=ax2-bx+c的圖象與直線y=-x也一定沒有交點(diǎn).

其中正確的結(jié)論是    (寫出所有正確結(jié)論的編號(hào)). 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年江蘇省高三上學(xué)期期中考試數(shù)學(xué) 題型:解答題

(本題滿分16分)A、B是函數(shù)f(x)=+的圖象上的任意兩點(diǎn),且=(),已知點(diǎn)M的橫坐標(biāo)為.

    (Ⅰ)求證:M點(diǎn)的縱坐標(biāo)為定值;

    (Ⅱ)若Sn=f()+f()+…+f(),n∈N+且n≥2,求Sn

    (Ⅲ)已知數(shù)列{an}的通項(xiàng)公式為. Tn為其前n項(xiàng)的和,若Tn<(Sn+1+1),對(duì)一切正整數(shù)都成立,求實(shí)數(shù)的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013屆黑龍江虎林高中高二下學(xué)期期中理科數(shù)學(xué)試卷(解析版) 題型:解答題

已知函數(shù)f(x)=alnx-x2+1.

(1)若曲線y=f(x)在x=1處的切線方程為4x-y+b=0,求實(shí)數(shù)a和b的值;

(2)若a<0,且對(duì)任意x1、x2∈(0,+∞),都|f(x1)-f(x2)|≥|x1-x2|,求a的取值范圍.

【解析】第一問中利用f′(x)=-2x(x>0),f′(1)=a-2,又f(1)=0,所以曲線y=f(x)在x=1處的切線方程為y=(a-2)(x-1),即(a-2)x-y+2-a=0,

由已知得a-2=4,2-a=b,所以a=6,b=-4.

第二問中,利用當(dāng)a<0時(shí),f′(x)<0,∴f(x)在(0,+∞)上是減函數(shù),

不妨設(shè)0<x1≤x2,則|f(x1)-f(x2)|=f(x1)-f(x2),|x1-x2|=x2-x1,

∴|f(x1)-f(x2)|≥|x1-x2|等價(jià)于f(x1)-f(x2)≥x2-x1

即f(x1)+x1≥f(x2)+x2,結(jié)合構(gòu)造函數(shù)和導(dǎo)數(shù)的知識(shí)來解得。

(1)f′(x)=-2x(x>0),f′(1)=a-2,又f(1)=0,所以曲線y=f(x)在x=1處的切線方程為y=(a-2)(x-1),即(a-2)x-y+2-a=0,

由已知得a-2=4,2-a=b,所以a=6,b=-4.

(2)當(dāng)a<0時(shí),f′(x)<0,∴f(x)在(0,+∞)上是減函數(shù),

不妨設(shè)0<x1≤x2,則|f(x1)-f(x2)|=f(x1)-f(x2),|x1-x2|=x2-x1,

∴|f(x1)-f(x2)|≥|x1-x2|等價(jià)于f(x1)-f(x2)≥x2-x1,即f(x1)+x1≥f(x2)+x2,

令g(x)=f(x)+x=alnx-x2+x+1,g(x)在(0,+∞)上是減函數(shù),

∵g′(x)=-2x+1=(x>0),

∴-2x2+x+a≤0在x>0時(shí)恒成立,

∴1+8a≤0,a≤-,又a<0,

∴a的取值范圍是

 

查看答案和解析>>

同步練習(xí)冊(cè)答案