6.將十進(jìn)制數(shù)17轉(zhuǎn)化為二進(jìn)制數(shù)為( 。
A.11110B.10101C.10011D.10001

分析 利用“除k取余法”是將十進(jìn)制數(shù)除以2,然后將商繼續(xù)除以2,直到商為0,然后將依次所得的余數(shù)倒序排列即可得到答案.

解答 解:17÷2=8…1
8÷2=4…0
4÷2=2…0
2÷2=1…0
1÷2=0…1
故17(10)=10001 (2)
故選:D.

點(diǎn)評 本題考查的知識點(diǎn)是十進(jìn)制與其它進(jìn)制之間的轉(zhuǎn)化,其中熟練掌握“除k取余法”的方法步驟是解答本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知函數(shù)y=f(x=2)是偶函數(shù),且當(dāng)x≠2時(shí)其導(dǎo)函數(shù)f′(x)滿足(x-2)f′(x)>0,若2<a<3,則下列不等式式成立的是( 。
A.f(2a)<f(3)<f(log2aB.f(3)<f(log2a)<f(2aC.f(log2a)<f(3)<f(2aD.f(log2a)<f(2a)<f(3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知全集U=R,集M={x|x-3≥0},N={x|-1≤x<4}.
(1)求集合M∩N,M∪N;
(2)求集合∁UN,(∁UN)∩M.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.拋物線x2=-6by的準(zhǔn)線與雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左、右支分別交于B、C兩點(diǎn),A為雙曲線的右頂點(diǎn),O為坐標(biāo)原點(diǎn),若∠AOC=∠BOC,則雙曲線的離心率為( 。
A.$\frac{2\sqrt{3}}{3}$B.3C.$\frac{4\sqrt{3}}{3}$D.2$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.若一個(gè)底面為正三角形、側(cè)棱與底面垂直的棱柱的三視圖如圖所示,則這個(gè)棱柱的側(cè)面積為72.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.某校甲、乙、丙、丁四個(gè)課外興趣班分別有75、75、200、150名學(xué)生,用分層抽樣的方法從該校這四個(gè)班共抽取20名學(xué)生參加某興趣活動(dòng),則應(yīng)在丙班抽取的學(xué)生人數(shù)為8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.若f(x)=$\frac{e^x}{x}$,f'(x)為f(x)的導(dǎo)函數(shù),則f'(x)=( 。
A.f'(x)=$-\frac{e^x}{x}$B.f'(x)=$\frac{{x{e^x}-{e^x}}}{x^2}$C.f'(x)=$\frac{{x{e^x}+{e^x}}}{x^2}$D.f'(x)=$\frac{{x{e^x}-{e^x}}}{x}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知函數(shù)f(x)=x3+x+1,若對任意的x,都有f(x2+a)+f(ax)>2,則實(shí)數(shù)a的取值范圍是0<a<4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知$\overrightarrow{a}$,$\overrightarrow$是兩個(gè)單位向量.
(Ⅰ)若|$\overrightarrow{a}$-2$\overrightarrow$|=2,試求|$\overrightarrow{a}$-$\overrightarrow$|的值;
(Ⅱ)若$\overrightarrow{a}$,$\overrightarrow$的夾角為60°,試求向量$\overrightarrow{m}$=$\overrightarrow{a}$+$\overrightarrow$與$\overrightarrow{n}$=$\overrightarrow{a}$-3$\overrightarrow$的夾角的余弦值.

查看答案和解析>>

同步練習(xí)冊答案