【題目】已知橢圓的左、右焦點(diǎn)分別為,,上頂點(diǎn)為A,過(guò)的直線y軸交于點(diǎn)M,滿足O為坐標(biāo)原點(diǎn)),且直線l與直線之間的距離為.

1)求橢圓C的方程;

2)在直線上是否存在點(diǎn)P,滿足?存在,指出有幾個(gè)這樣的點(diǎn)(不必求出點(diǎn)的坐標(biāo));若不存在,請(qǐng)說(shuō)明理由.

【答案】1;(2)存在兩個(gè)不同點(diǎn)P,滿足

【解析】

1)根據(jù)直線方程求出和焦點(diǎn),計(jì)算出橢圓方程的基本量;

2)求出滿足的點(diǎn)P的軌跡方程,將問(wèn)題轉(zhuǎn)化為考慮直線與曲線的交點(diǎn)個(gè)數(shù)問(wèn)題.

1)設(shè)橢圓C的半焦距為c

因?yàn)橹本l的方程為,令,得,則點(diǎn),即.

,得,則點(diǎn)

,得,解得,所以.

所以

所以橢圓C的方程為

2)存在點(diǎn)P,滿足

因?yàn)橹本與直線之間的距離為

所以,解得

因?yàn)?/span>,所以舍去,故

故直線的方程為:

設(shè)直線上存在點(diǎn)滿足,且點(diǎn),

整理得,它表示圓心在,半徑的圓

因?yàn)閳A心的距離為,所以

所以直線與圓相交,

所以在直線存在兩個(gè)不同點(diǎn)P,滿足

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】電視傳媒公司為了了解某地區(qū)電視觀眾對(duì)某類體育節(jié)目的收視情況,隨機(jī)抽取了100名觀眾進(jìn)行調(diào)查,其中女性有55名.下面是根據(jù)調(diào)查結(jié)果繪制的觀眾日均收看該體育節(jié)目時(shí)間的頻率分布直方圖;

將日均收看該體育節(jié)目時(shí)間不低于40分鐘的觀眾稱為體育迷,已知體育迷中有10名女性.

(Ⅰ)根據(jù)已知條件完成下面的列聯(lián)表,并據(jù)此資料你是否認(rèn)為體育迷與性別

有關(guān)?


非體育迷

體育迷

合計(jì)









合計(jì)




(Ⅱ)將日均收看該體育項(xiàng)目不低于50分鐘的觀眾稱為超級(jí)體育迷,已知超級(jí)體育迷中有2名女性,若從超級(jí)體育迷中任意選取2人,求至少有1名女性觀眾的概率.


0.05

0.01

k

3.841

6.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】自湖北爆發(fā)新型冠狀病毒肺炎疫情以來(lái),湖北某市醫(yī)護(hù)人員和醫(yī)療、生活物資嚴(yán)重匱乏,全國(guó)各地紛紛馳援.某運(yùn)輸隊(duì)接到從武漢送往該市物資的任務(wù),該運(yùn)輸隊(duì)有8輛載重為6tA型卡車,6輛載重為10tB型卡車,10名駕駛員,要求此運(yùn)輸隊(duì)每天至少運(yùn)送240t物資.已知每輛卡車每天往返的次數(shù)為A型卡車5次,B型卡車4次,每輛卡車每天往返的成本A型卡車1200元,B型卡車1800元,則每天派出運(yùn)輸隊(duì)所花的成本最低為_____

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知實(shí)數(shù)a、b滿足a2+b2-ab3

1)求a-b的取值范圍;

2)若ab0,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知平面平面ABCP、P在平面ABC的同側(cè),二面角的平面角為鈍角,Q到平面ABC的距離為,是邊長(zhǎng)為2的正三角形,,,.

1)求證:面平面PAB

2)求二面角的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),.

1)當(dāng)吋,解不等式;

2)設(shè).

①當(dāng)時(shí),若存在,使得,證明:;

②當(dāng)時(shí),討論的零點(diǎn)個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓C)的離心率為,點(diǎn)在橢圓C上,直線與橢圓C交于不同的兩點(diǎn)A,B.

1)求橢圓C的方程;

2)直線分別交y軸于M,N兩點(diǎn),問(wèn):x軸上是否存在點(diǎn)Q,使得?若存在,求出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

1)求函數(shù)在點(diǎn)處的切線方程;

2)設(shè)函數(shù)上有且只有一個(gè)零點(diǎn),求的取值范圍.(其中,為自然對(duì)數(shù)的底數(shù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

1)求曲線在點(diǎn)處的切線方程;

2)判斷函數(shù)的零點(diǎn)的個(gè)數(shù),并說(shuō)明理由;

3)設(shè)的一個(gè)零點(diǎn),證明曲線在點(diǎn)處的切線也是曲線的切線.

查看答案和解析>>

同步練習(xí)冊(cè)答案