7.如圖,圓O的半徑為2,l為圓O外一條直線,圓心O到直線l的距離|OA|=3,P0為圓周上一點(diǎn),且∠AOP0=$\frac{π}{6}$,點(diǎn)P從P0處開始以2秒一周的速度繞點(diǎn)O在圓周上按逆時(shí)針方向作勻速圓周運(yùn)動(dòng).t秒鐘后,點(diǎn)P到直線l的距離用t(t≥0)可以表示為3-2cos(πt+$\frac{π}{6}$),t≥0.

分析 由題意,周期為2,t秒鐘后,旋轉(zhuǎn)角為ωt,求出點(diǎn)P的橫坐標(biāo),從而求出點(diǎn)P到直線l的距離.

解答 解:由題意,周期為2,則t秒鐘后,旋轉(zhuǎn)角為
ωt=$\frac{2π}{T}$t=πt,
則此時(shí)點(diǎn)P的橫坐標(biāo)為
x=2cos(πt+$\frac{π}{6}$),
所以點(diǎn)P到直線l的距離為
d=3-2cos(πt+$\frac{π}{6}$),t≥0.
故答案為;3-2cos(πt+$\frac{π}{6}$),t≥0.

點(diǎn)評(píng) 本題考查已知三角函數(shù)模型的應(yīng)用問題,關(guān)鍵是搞清旋轉(zhuǎn)角,理解三角函數(shù)的定義.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.若acosθ-sinθ=1,asinθ+cosθ=1,則sinθ=-$\frac{1}{2}$或0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.某市A,B兩所中學(xué)的學(xué)生組隊(duì)參加信息聯(lián)賽,A中學(xué)推薦了3名男生、2名女生,B中學(xué)推薦了3名男生、4名女生,兩校所推薦的學(xué)生一起參加集訓(xùn).由于集訓(xùn)后隊(duì)員水平相當(dāng),從參加集訓(xùn)的男生中隨機(jī)抽取3人、女生中隨機(jī)抽取3人組成代表隊(duì)參賽.
(Ⅰ)求A中學(xué)至少有1名學(xué)生入選代表隊(duì)的概率;
(Ⅱ)設(shè)X表示A中學(xué)參賽的男生人數(shù),求X的分布列和數(shù)學(xué)期望;
(Ⅲ)已知3名男生的比賽成績(jī)分別為76,80,84,3名女生的比賽成績(jī)分別為77,a(a∈N*),81,若3名男生的比賽成績(jī)的方差大于3名女生的比賽成績(jī)的方差,寫出a的取值范圍(不要求過程).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知點(diǎn)P(1,1),圓C:x2+y2-4y=0,過點(diǎn)P的動(dòng)直線l與圓C交于A,B兩點(diǎn),線段AB的中點(diǎn)為M,O為坐標(biāo)原點(diǎn).
(1)求M的軌跡方程;
(2)是否存在點(diǎn)M滿足OP⊥OM,若存在請(qǐng)求出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.我省某校要進(jìn)行一次月考,一般考生必須考5 門學(xué)科,其中語(yǔ)、數(shù)、英、綜合這四科是必考科目,另外一門在物理、化學(xué)、政治、歷史、生物、地理、英語(yǔ)Ⅱ中選擇.為節(jié)省時(shí)間,決定每天上午考兩門,下午考一門學(xué)科,三天半考完.
(1)若語(yǔ)、數(shù)、英、綜合四門學(xué)科安排在上午第一場(chǎng)考試,則“考試日程安排表”有多少種不同的安排方法;
(2)如果各科考試順序不受限制,求數(shù)學(xué)、化學(xué)在同一天考的概率是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.在極坐標(biāo)系中,點(diǎn)M坐標(biāo)是$({2,\frac{π}{3}})$,曲線C的方程為ρ=2$\sqrt{2}$sin(θ+$\frac{π}{4}$);以極點(diǎn)為坐標(biāo)原點(diǎn),極軸為x軸的正半軸建立平面直角坐標(biāo)系,直線l經(jīng)過點(diǎn)M和極點(diǎn).
(1)寫出直線l的極坐標(biāo)方程和曲線C的直角坐標(biāo)方程;
(2)直線l和曲線C相交于兩點(diǎn)A、B,求線段AB的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.在直角坐標(biāo)系xoy中以O(shè)為極點(diǎn),x軸正半軸為極軸建立坐標(biāo)系.曲線C1的極坐標(biāo)方程和曲線C2的參數(shù)方程分別為ρ=4sinθ,$\left\{\begin{array}{l}{x=-1-2t}\\{y=5+2t}\end{array}\right.$(t為參數(shù)).
(1)求曲線C1的直角坐標(biāo)方程與曲線C2的普通方程,并指出是什么曲線;
(2)求曲線C1與C2交點(diǎn)的極坐標(biāo)(ρ≥0,0≤θ<2π).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.從一批含有6件正品,3件次品的產(chǎn)品中,有放回地抽取2次,每次抽取1件,設(shè)抽得次品數(shù)為X,則D(X)=$\frac{4}{9}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知圓O:x2+y2=1,圓O關(guān)于直線x+y+2=0對(duì)稱的圓C.
(1)求圓C的方程;
(2)在直線l:2x+y-3=0上是否存在點(diǎn)P,過點(diǎn)P分別作圓O,圓C的兩條切線PA,PB分別為A,B,有PA=PB?若存在,求出點(diǎn)P的坐標(biāo),若不存在說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案