【題目】如圖,在長方形中,,,點為線段上一動點,現(xiàn)將沿折起,使點在面內(nèi)的射影在直線上,當點從運動到,則點所形成軌跡的長度為( )
A. B. C. D.
【答案】C
【解析】
根據(jù)圖形的翻折過程中變與不變的量和位置關系知,若連接D'K,則D'KA=90°,得到K點的軌跡是以AD'為直徑的圓上一弧,根據(jù)長方形的邊長得到圓的半徑,求得此弧所對的圓心角的弧度數(shù),利用弧長公式求出軌跡長度.
由題意,將△AED沿AE折起,使平面AED⊥平面ABC,在平面AED內(nèi)過點D作DK⊥AE,K為垂足,由翻折的特征知,連接D'K,
則D'KA=90°,故K點的軌跡是以AD'為直徑的圓上一弧,根據(jù)長方形知圓半徑是,
如圖當E與C重合時,AK==,
取O為AD′的中點,得到△OAK是正三角形.
故∠K0A=,∴∠K0D'=,
其所對的弧長為=,
故選:
科目:高中數(shù)學 來源: 題型:
【題目】設f(x)= (x>0),計算觀察以下格式: f1(x)=f(x),f2(x)=f(f1(x)),f3(x)=f(f2(x)),f4(x)=f(f3(x)),…
根據(jù)以上事實得到當n∈N*時,fn(1)= .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】[選修4-4:坐標系與參數(shù)方程]
在直角坐標系xOy中,直線l的參數(shù)方程為 (t為參數(shù)),在以O為極點x軸的非負半軸為極軸建立的極坐標系中,曲線C的極坐標方程為ρ=2.
(1)求直線l的普通方程和曲線C的直角坐標方程;
(2)若點Q是曲線C上的動點,求點Q到直線l的距離的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,小明想將短軸長為2,長軸長為4的一個半橢圓形紙片剪成等腰梯形ABDE,且梯形ABDE內(nèi)接于半橢圓,DE∥AB,AB為短軸,OC為長半軸
(1)求梯形ABDE上底邊DE與高OH長的關系式;
(2)若半橢圓上到H的距離最小的點恰好為C點,求底邊DE的取值范圍
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直三棱柱ABC﹣A1BlC1中,平面α與棱AB,AC,A1C1 , A1B1分別交于點E,F(xiàn),G,H,且直線AA1∥平面α.有下列三個命題:①四邊形EFGH是平行四邊形;②平面α∥平面BCC1B1;③平面α⊥平面BCFE.其中正確的命題有( )
A.①②
B.②③
C.①③
D.①②③
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,設為不同的兩點,直線的方程為,設,其中均為實數(shù).下列四個說法中:
①存在實數(shù),使點在直線上;
②若,則過兩點的直線與直線重合;
③若,則直線經(jīng)過線段的中點;
④若,則點在直線的同側(cè),且直線與線段的延長線相交.
所有結(jié)論正確的說法的序號是______________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】對某校高一年級學生參加社區(qū)服務次數(shù)進行統(tǒng)計,隨機抽取M名學生作為樣本,得到這M名學生參加社區(qū)服務的次數(shù).根據(jù)此數(shù)據(jù)作出了頻數(shù)與頻率的統(tǒng)計表和頻率分布直方圖如下:
分組 | 頻數(shù) | 頻率 |
[10,15) | 10 | 0.25 |
[15,20) | 25 | n |
[20,25) | m | p |
[25,30) | 2 | 0.05 |
合計 | M | 1 |
(1)求出表中M,p及圖中a的值;
(2)若該校高一學生有360人,試估計該校高一學生參加社區(qū)服務的次數(shù)在區(qū)間[15,20)內(nèi)的人數(shù);
(3)在所取樣本中,從參加社區(qū)服務的次數(shù)不少于20次的學生中任選2人,請列舉出所有基本事件,并求至多1人參加社區(qū)服務次數(shù)在區(qū)間[20,25)內(nèi)的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com