【題目】甲、乙兩人要對C處進(jìn)行考察,甲在A處,乙在B處,基地在O處,此時∠AOB=90°,測得|AC|=5 km,|BC|=km,|AO|=|BO|=2 km,如圖所示,試問甲、乙兩人應(yīng)以什么方向走,才能使兩人的行程之和最。
【答案】甲應(yīng)以與OB平行的方向行走,乙應(yīng)沿斜率為的直線向上方行走,才能使他們的行程和最小
【解析】試題分析:以O為原點,OB為x軸,建立直角坐標(biāo)系,由兩點間線段最短,所以甲沿著直線AC,乙沿著直線BC行走即可,只需求出C點坐標(biāo)即可得直線的斜率,即為行走方向.
試題解析:
以O為原點,OB為x軸,建立直角坐標(biāo)系(如圖所示),
設(shè)C(x,y),則有A(0,2),B(2,0),
由|AC|=5,有=5,①
|BC|=,有=.②
由①②解得或
由x、y的實際意義知x>0,y>0,∴C(5,2).
而A(0,2),∴AC∥x軸,即AC∥OB.
由B(2,0)、C(5,2),知kBC==.
故甲應(yīng)以與OB平行的方向行走,乙應(yīng)沿斜率為的直線向上方行走,才能使他們的行程和最小
科目:高中數(shù)學(xué) 來源: 題型:
【題目】相傳古代印度國王在獎賞他聰明能干的宰相達(dá)依爾(國際象棋發(fā)明者)時,問他需要什么,達(dá)依爾說:“國王只要在國際象棋棋盤的第一格子上放一粒麥子,第二格子上放二粒,第三格子上放四粒,以后按比例每一格加一倍,一直放到第64格(國際象棋棋盤格數(shù)是8×8=64),我就感恩不盡,其他什么也不要了.”國王想:“這才有多少,還不容易!”于是讓人扛來一袋小麥,但不到一會兒就用完了,再來一袋很快又沒有了,結(jié)果全印度的糧食用完還不夠,國王很奇怪,怎么也算不清這筆賬.請你設(shè)計一個程序框圖表示其算法,來幫國王計算一下需要多少粒小麥.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)f(x)=x3+sinx,(﹣1<x<1),若f(x2)+f(﹣x)>0,則實數(shù)x的取值范圍是: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=xlnx.
(1)求f(x)的單調(diào)區(qū)間和極值;
(2)設(shè)A(x1 , f(x1)),B(x2 , f(x2)),且x1≠x2 , 證明: <f′( ).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=|x﹣2a|,a∈R.
(1)若不等式f(x)<1的解集為{x|1<x<3},求a的值;
(2)若存在x0∈R,使f(x0)+x0<3,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)的圖象關(guān)于原點對稱,其中為常數(shù).
(1)求的值;
(2)當(dāng)時, 恒成立,求實數(shù)的取值范圍;
(3)若關(guān)于的方程在上有解,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列函數(shù)為偶函數(shù)且在區(qū)間(0,+∞)上單調(diào)遞增的是( )
A.y=
B.y=﹣x2+1
C.y=lg|x|
D.y=3x
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=aln(x+1)﹣x2在區(qū)間(0,1)內(nèi)任取兩個實數(shù)p,q,且p≠q,不等式 恒成立,則實數(shù)a的取值范圍為( )
A.[15,+∞)
B.
C.[1,+∞)
D.[6,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】本著健康、低碳的生活理念,租自行車騎游的人越來越多.某自行車租車點的收費標(biāo)準(zhǔn)是每車每次租車時間不超過兩小時免費,超過兩小時的部分每小時收費2元(不足1小時的部分按1小時計算).有甲、乙兩人相互獨立來該租車點租車騎游(各租一車一次).設(shè)甲、乙不超過兩小時還車的概率分別為 , ;兩小時以上且不超過三小時還車的概率分別為 , ;兩人租車時間都不會超過四小時. (Ⅰ)求甲乙兩人所付的租車費用相同的概率.
(Ⅱ)設(shè)甲乙兩人所付的租車費用之和為隨機(jī)變量ξ,求ξ的分布列及數(shù)學(xué)期望Eξ.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com