用數(shù)學(xué)歸納法證明:1-+…++…+

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:四川省綿陽(yáng)市高中2007級(jí)第一次診斷性考試、數(shù)學(xué)(理工類(lèi)) 題型:044

解答題:解答應(yīng)寫(xiě)出文字說(shuō)明,證明過(guò)程或演算步驟.

設(shè),用數(shù)學(xué)歸納法證明:f(1)+f(2)+f(n-1)=n[f(n)-1](n≥2且n∈N)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:北京市育園中學(xué)07屆高三數(shù)學(xué)質(zhì)量檢測(cè)數(shù)學(xué)(理) 題型:047

解答題

用數(shù)學(xué)歸納法證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013屆浙江寧波四校高二下學(xué)期期中聯(lián)考理科數(shù)學(xué)試卷(解析版) 題型:解答題

已知函數(shù),數(shù)列的項(xiàng)滿(mǎn)足: ,(1)試求

(2) 猜想數(shù)列的通項(xiàng),并利用數(shù)學(xué)歸納法證明.

【解析】第一問(wèn)中,利用遞推關(guān)系,

,   

第二問(wèn)中,由(1)猜想得:然后再用數(shù)學(xué)歸納法分為兩步驟證明即可。

解: (1) ,

,    …………….7分

(2)由(1)猜想得:

(數(shù)學(xué)歸納法證明)i) ,  ,命題成立

ii) 假設(shè)時(shí),成立

時(shí),

                              

綜合i),ii) : 成立

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013屆江西省高二下學(xué)期期中考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題

已知,(其中

⑴求;

⑵試比較的大小,并說(shuō)明理由.

【解析】第一問(wèn)中取,則;                         …………1分

對(duì)等式兩邊求導(dǎo),得

,則得到結(jié)論

第二問(wèn)中,要比較的大小,即比較:的大小,歸納猜想可得結(jié)論當(dāng)時(shí),;

當(dāng)時(shí),;

當(dāng)時(shí),;

猜想:當(dāng)時(shí),運(yùn)用數(shù)學(xué)歸納法證明即可。

解:⑴取,則;                         …………1分

對(duì)等式兩邊求導(dǎo),得

,則。       …………4分

⑵要比較的大小,即比較:的大小,

當(dāng)時(shí),

當(dāng)時(shí),;

當(dāng)時(shí),;                              …………6分

猜想:當(dāng)時(shí),,下面用數(shù)學(xué)歸納法證明:

由上述過(guò)程可知,時(shí)結(jié)論成立,

假設(shè)當(dāng)時(shí)結(jié)論成立,即,

當(dāng)時(shí),

時(shí)結(jié)論也成立,

∴當(dāng)時(shí),成立。                          …………11分

綜上得,當(dāng)時(shí),;

當(dāng)時(shí),;

當(dāng)時(shí), 

 

查看答案和解析>>

同步練習(xí)冊(cè)答案