【題目】給定正整數(shù),已知用克數(shù)都是正整數(shù)的塊砝碼和一臺(tái)天平可以稱出質(zhì)量為克的所有物品.
(1)求的最小值;
(2)當(dāng)且僅當(dāng)取什么值時(shí),上述塊砝碼的組成方式是惟一確定的?并證明你的結(jié)論.
【答案】(1);(2)見解析
【解析】
(1)設(shè)這塊砝碼的質(zhì)量數(shù)分別為,且.因?yàn)樘炱絻啥硕伎梢苑彭来a,故可稱質(zhì)量為.若利用這塊砝碼可以稱出質(zhì)量為的
物品,則上述表示式中含有,由對(duì)稱性易知也含有,即
.
所以, .即.
設(shè),則.
且時(shí),可取.
由數(shù)的三進(jìn)制表示可知,對(duì)任意,都有,其中.
則 .
令,則.
故對(duì)一切的整數(shù),都有,其中.
由于,因此,對(duì)一切的整數(shù),也有上述表示.
綜上,可知的最小值.
(2)Ⅰ當(dāng)時(shí),由(1)可知就是一種砝碼的組成方式.下面我們證明也是一種方式.
若,由(1)可知,則;
若,則.
由(1)可知,其中.
易知,.(否則矛盾)則.
所以,當(dāng)時(shí),塊砝碼的組成方式不惟一.
Ⅱ.下面我們證明:當(dāng)時(shí),塊砝碼的組成方式是惟一的,即.
若對(duì)每個(gè),都有,即
.
注意左邊集合中至多有個(gè)元素,故必有 .
從而,對(duì)每個(gè),,都可以惟一地表示為,其中.
因而,,則.
令,則.
由上可知,對(duì)每個(gè),都可以惟一地表示為,其中.
特別地,易知.
下面用歸納法證明.
當(dāng)時(shí),易知中最小的正整數(shù)是,故.
假設(shè)當(dāng)時(shí),.
由于就是數(shù)的三進(jìn)制表示,易知它們正好是,故應(yīng)是除上述表示外中最小的數(shù),因此,.
由歸納法可知,.
綜合Ⅰ,Ⅱ可知,當(dāng)且僅當(dāng)時(shí),上述塊砝碼的組成方式是惟一確定的.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若正弦型函數(shù)有如下性質(zhì):最大值為,最小值為;相鄰兩條對(duì)稱軸間的距離為.
(I)求函數(shù)解析式;
(II)當(dāng)時(shí),求函數(shù)的值域.
(III)若方程在區(qū)間上有兩個(gè)不同的實(shí)根,求實(shí)數(shù)的取值范
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)于正整數(shù)、,定義,其中、為非負(fù)整數(shù),,且.求最大的正整數(shù),使得存在正整數(shù),對(duì)于任意的正整數(shù),都有.證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)的圖像與y軸交點(diǎn)的縱坐標(biāo)為1,在y軸右側(cè)的第一個(gè)最大值和最小值分別為和.
(1)求函數(shù)的解析式:
(2)將函數(shù)圖像上所有點(diǎn)的橫坐標(biāo)縮小原來(lái)的(縱坐標(biāo)不變),再將所得圖像沿x軸正方向平移個(gè)單位,得到函數(shù)的圖像,求函數(shù)的解析式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,已知點(diǎn),拋物線的焦點(diǎn)為,設(shè)為拋物線上異于頂點(diǎn)的動(dòng)點(diǎn),直線交拋物線于另一點(diǎn),連結(jié),,并延長(zhǎng),分別交拋物線與點(diǎn),.
(1)當(dāng)軸時(shí),求直線與軸的交點(diǎn)的坐標(biāo);
(2)設(shè)直線,的斜率分別為,,試探索是否為定值?若是,求出此定值;若不是,試說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知角α=45°,
(1)在-720°~0°范圍內(nèi)找出所有與角α終邊相同的角β;
(2)設(shè)集合,判斷兩集合的關(guān)系.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,,對(duì)任意,有成立.
(1)求的通項(xiàng)公式;
(2)設(shè),,是數(shù)列的前項(xiàng)和,求正整數(shù),使得對(duì)任意,恒成立;
(3)設(shè),是數(shù)列的前項(xiàng)和,若對(duì)任意均有恒成立,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在三棱錐P-ABC中,PA⊥底面ABC, .點(diǎn)D,E,N分別為棱PA,PC,BC的中點(diǎn),M是線段AD的中點(diǎn),PA=AC=4,AB=2.
(Ⅰ)求證:MN∥平面BDE;
(Ⅱ)求二面角C-EM-N的正弦值;
(Ⅲ)已知點(diǎn)H在棱PA上,且直線NH與直線BE所成角的余弦值為,求線段AH的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如表提供了工廠技術(shù)改造后某種型號(hào)設(shè)備的使用年限和所支出的維修費(fèi)(萬(wàn)元)的幾組對(duì)照數(shù)據(jù):
(年) | 2 | 3 | 4 | 5 | 6 |
(萬(wàn)元) | 1 | 2.5 | 3 | 4 | 4.5 |
參考公式:,.
(1)若知道對(duì)呈線性相關(guān)關(guān)系,請(qǐng)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關(guān)于的線性回歸方程;
(2)已知該工廠技術(shù)改造前該型號(hào)設(shè)備使用10年的維修費(fèi)用為9萬(wàn)元,試根據(jù)(1)求出的線性回歸方程,預(yù)測(cè)該型號(hào)設(shè)備技術(shù)改造后,使用10年的維修費(fèi)用能否比技術(shù)改造前降低?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com