(2009•上海模擬)隨著機構(gòu)改革工作的深入進行,各單位要減員增效,有一家公司現(xiàn)有職員2a人(140<2a<420,且a為偶數(shù)),每人每年可創(chuàng)利10萬元.據(jù)評估,在經(jīng)營條件不變的前提下,若裁員x人,則留崗職員每人每年多創(chuàng)利0.1x萬元,但公司需付下崗職員每人每年4萬元的生活費,并且該公司正常運轉(zhuǎn)情況下,所裁人數(shù)不超過50人,為獲得最大的經(jīng)濟效益,該公司應(yīng)裁員多少人?
分析:設(shè)裁員x人,可獲得的經(jīng)濟效益為y萬元,y=(2a-x)(b+0.01bx)-0.4bx,配方,根據(jù)函數(shù)的定義域,結(jié)合對稱軸,可進行分類討論,從而求y的最大值.
解答:解:設(shè)裁員x (x∈(0,50]x∈N*)人,可獲得的經(jīng)濟效益為y萬元,則由題意,
y=(2a-x)(10+0.1x)-4x(5分)=-
1
10
[x2-2(a-70)x]+20a
x∈(0,50]x∈N*(6分)
當(dāng)0<a-70≤50,即70<a≤120時,x=a-70,y取到最大值;    (9分)
當(dāng)a-70>50,即120<a<210時,x=50,y取到最大值;(12分)
答:當(dāng) 70<a≤120時,公司應(yīng)裁員a-70人,經(jīng)濟效益取到最大值;
當(dāng)120<a<210,公司應(yīng)裁員50人,經(jīng)濟效益取到最大值(14分)
點評:本題以實際問題為載體,考查函數(shù)的運用,注意分類討論,并聯(lián)系二次函數(shù)圖象是求函數(shù)最大值的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2009•上海模擬)在解決問題:“證明數(shù)集A={x|2<x≤3}沒有最小數(shù)”時,可用反證法證明.假設(shè)a(2<a≤3)是A中的最小數(shù),則取a′=
a+2
2
,可得:2=
2+2
2
<a′=
a+2
2
a+a
2
=a≤3
,與假設(shè)中“a是A中的最小數(shù)”矛盾!那么對于問題:“證明數(shù)集B={x|x=
n
m
,m,n∈N*,并且n<m}
沒有最大數(shù)”,也可以用反證法證明.我們可以假設(shè)x=
n0
m0
是B中的最大數(shù),則可以找到x'=
n0+1
m0+1
n0+1
m0+1
(用m0,n0表示),由此可知x'∈B,x'>x,這與假設(shè)矛盾!所以數(shù)集B沒有最大數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•上海模擬)定義區(qū)間(m,n),[m,n],(m,n],[m,n)的長度均為n-m,其中n>m.
(1)若關(guān)于x的不等式2ax2-12x-3>0的解集構(gòu)成的區(qū)間的長度為
6
,求實數(shù)a的值;
(2)已知關(guān)于x的不等式sinxcosx+
3
cos2x+b>0
,x∈[0,π]的解集構(gòu)成的各區(qū)間的長度和超過
π
3
,求實數(shù)b的取值范圍;
(3)已知關(guān)于x的不等式組
7
x+1
>1 
log2x+log2(tx+3t)<2
的解集構(gòu)成的各區(qū)間長度和為6,求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•上海模擬)已知全集U=R,集合A={x|x2-2x-3≤0,x∈R},B={x||x-2|<2,x∈R},那么集合A∩B=
{x|0<x≤3}
{x|0<x≤3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•上海模擬)已知集合A={z|z=1+i+i2+…+in,n∈N*},B={ω|ω=z1•z2,z1、z2∈A},(z1可以等于z2),從集合B中任取一元素,則該元素的模為
2
的概率為
2
7
2
7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•上海模擬)已知點列B1(1,y1),B2(2,y2),…,Bn(n,yn),…(n∈N*)順次為直線y=
x4
上的點,點列A1(x1,0),A2(x2,0),…,An(xn,0),…(n∈N*)順次為x軸上的點,其中x1=a(0<a<1),對任意的n∈N*,點An、Bn、An+1構(gòu)成以Bn為頂點的等腰三角形.
(1)證明:數(shù)列{yn}是等差數(shù)列;
(2)求證:對任意的n∈N*,xn+2-xn是常數(shù),并求數(shù)列{xn}的通項公式;
(3)對上述等腰三角形AnBnAn+1添加適當(dāng)條件,提出一個問題,并做出解答.(根據(jù)所提問題及解答的完整程度,分檔次給分)

查看答案和解析>>

同步練習(xí)冊答案