【題目】(本小題滿分10分)選修4—5:不等式選講

設(shè)函數(shù)f(x)=|2x﹣7|+1.

(Ⅰ)求不等式f(x)≤x的解集;

(Ⅱ)若存在x使不等式f(x)﹣2|x﹣1|≤a成立,求實數(shù)a的取值范圍.

【答案】(Ⅰ) (Ⅱ)

【解析】試題分析:根據(jù)零點分區(qū)間討論法解絕對值不等式,存在使不等式 成立,只需研究函數(shù),分區(qū)間化簡函數(shù),求出函數(shù)的最小值,得出的范圍.

試題解析:

(Ⅰ)由f(x)≤x得|2x﹣7|+1≤x,

∴不等式f(x)≤x的解集為

(Ⅱ)令g(x)=f(x)﹣2|x﹣1|=|2x﹣7|﹣2|x﹣1|+1,

,∴g(x)min=﹣4,

∵存在x使不等式f(x)﹣2|x﹣1|≤a成立,

∴g(x)min≤a,∴a≥﹣4.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù) ,則函數(shù)f(x)的值域是;若f[f(x0)]=2,則x0=

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下面關(guān)于集合的表示正確的個數(shù)是(  )
①{2,3}≠{3,2}; ②{(x , y)|x+y=1}={y|x+y=1};
③{x|x>1}={y|y>1}; ④{x|x+y=1}={y|x+y=1}.
A.0
B.1
C.2
D.3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知A(x1 , f(x1),B(x2 , f(x2))是函數(shù)f(x)=2sin(ωx+φ)(ω>0,﹣ <φ<0)圖象上的任意兩點,且初相φ的終邊經(jīng)過點P(1,﹣ ),若|f(x1)﹣f(x2)|=4時,|x1﹣x2|的最小值為 . (Ⅰ)求函數(shù)f(x)的解析式;
(Ⅱ)當x∈[0, ]時,求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(Ⅲ)當x∈[0, ]時,不等式mf(x)+2m≥f(x)恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知直線l: (t為參數(shù)),以坐標原點為極點,x軸的正半軸為極軸建立極坐標系,曲線C的極坐標方程為ρ=2.
(1)若點M的直角坐標為(2, ),直線l與曲線C交于A、B兩點,求|MA|+|MB|的值;
(2)設(shè)曲線C經(jīng)過伸縮變換 得到曲線C′,求曲線C′的內(nèi)接矩形周長的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(本小題滿分12分)

在直角坐標系中,已知,若。

(Ⅰ)求動點P的軌跡的方程;

(Ⅱ)過點M的直線與(1)中軌跡相交于點A、B,求的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】利民奶牛場在2016年年初開始改進奶牛飼養(yǎng)方法,同時每月增加一定數(shù)目的產(chǎn)奶奶牛,2016年2到5月該奶牛場的產(chǎn)奶量如表所示:

月份

2

3

4

5

產(chǎn)奶量y(噸)

2.5

3

4

4.5


(1)在給定的坐標系中畫出表中數(shù)據(jù)的散點圖;
(2)求出y關(guān)于x的線性回歸方程;
(3)試預測該奶牛場6月份的產(chǎn)奶量? (注:回歸方程 = x+ 中, = = =

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖為一簡單組合體,其底面ABCD為正方形,棱PD與EC均垂直于底面ABCD,PD=2EC,N為PB的中點,求證:
(1)平面EBC∥平面PDA;
(2)NE⊥平面PDB.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè) ,其中 n 為正整數(shù).
(1)求f(1),f(2),f(3) 的值;
(2)猜想滿足不等式 f(n)<0 的正整數(shù) n 的范圍,并用數(shù)學歸納法證明你的猜想.

查看答案和解析>>

同步練習冊答案