【題目】某試驗(yàn)田分別種植了甲乙兩種水稻,為了研究這兩種水稻的產(chǎn)量,抽檢了甲、乙兩種水稻的谷穗各1000株.經(jīng)統(tǒng)計(jì),得到每株谷穗的粒數(shù)的頻率分布直方圖如圖:

(Ⅰ)求乙種水稻谷穗的粒數(shù)落在[325,375)之間的頻率,并將頻率分布直方圖補(bǔ)齊;
(Ⅱ)試根據(jù)頻率分布直方圖估計(jì)甲種水稻谷穗粒數(shù)的中位數(shù)與平均數(shù)(精確到0.1);
(Ⅲ)根據(jù)頻率分布直方圖,請(qǐng)至少?gòu)膬煞矫鎸?duì)甲乙兩種水稻谷穗的粒數(shù)作出評(píng)價(jià).

【答案】解:(Ⅰ)乙種水稻谷穗的粒數(shù)落在[325,375)之間的頻率為1﹣50×(0.002+0.004+0.008+0.002)=0.2,
頻率分布直方圖如圖所示.

(Ⅱ)設(shè)中位數(shù)估計(jì)值為x,則有 50×(0.004+0.002)+(x﹣275)×0.006=0.5,解得x=308.3
由直方圖得平均數(shù)的估計(jì)值為50×0.004×200+50×0.002×250+50×0.006×300+50×0.003×350+50×0.005×400=307.5,
答:中位數(shù)和平均數(shù)的估計(jì)值分別為308.3和307.5,
(Ⅲ)由于乙稻谷谷穗粒數(shù)平均值的估計(jì)值為300<307.5
故可得出結(jié)論:乙稻谷谷穗粒數(shù)總體上少于甲種水稻,又從頻率分布直方圖可看出乙稻谷谷穗粒數(shù)比甲種水稻要整齊.
【解析】(I)根據(jù)頻率分布直方圖的小矩形的面積和為1,可求落在[325,375)內(nèi)的頻率,利用組距為50,求出小矩形的高;
(II)根據(jù)中位數(shù)的左右兩邊小矩形的面積和相等,求得從左開(kāi)始面積和為0.5的小矩形底邊橫坐標(biāo)值,即為中位數(shù);計(jì)算各個(gè)小矩形的底邊中間值乘以其面積之和,即為數(shù)據(jù)的平均數(shù);
(III)根據(jù)甲、乙兩種水稻谷粒的平均數(shù)大小和頻率分布情況說(shuō)明.
【考點(diǎn)精析】本題主要考查了用樣本的數(shù)字特征估計(jì)總體的數(shù)字特征的相關(guān)知識(shí)點(diǎn),需要掌握用樣本估計(jì)總體時(shí),如果抽樣的方法比較合理,那么樣本可以反映總體的信息,但從樣本得到的信息會(huì)有偏差.在隨機(jī)抽樣中,這種偏差是不可避免的才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】【2017江西師范大學(xué)附屬中學(xué)三模已知函數(shù)是自然對(duì)數(shù)的底數(shù)).

(1)求函數(shù)的單調(diào)區(qū)間;

(2)若,當(dāng)時(shí),求函數(shù)的最大值;

(3)若,求證: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某種產(chǎn)品的廣告費(fèi)支出x與銷(xiāo)售額y(單位:萬(wàn)元)之間有如下對(duì)應(yīng)數(shù)據(jù):

P(k2>k)

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k

0.455

0.708

1.323

2.072

2.706

3.841

5.024

6.635

7.879

10.83

x

2

4

5

6

8

y

30

40

60

50

70

(Ⅰ)畫(huà)出散點(diǎn)圖;
(Ⅱ)求回歸直線方程;
(Ⅲ)試預(yù)測(cè)廣告費(fèi)支出為10萬(wàn)元時(shí),銷(xiāo)售額多大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是2008年北京奧運(yùn)會(huì)上,七位評(píng)委為某奧運(yùn)項(xiàng)目打出的分?jǐn)?shù)的莖葉統(tǒng)計(jì)圖,去掉一個(gè)最高分和一個(gè)最低分后,所剩數(shù)據(jù)的平均數(shù)為 ;方差為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(選修4—4;坐標(biāo)系與參數(shù)方程)已知曲線的極坐標(biāo)方程是,曲線經(jīng)過(guò)平移變換得到曲線;以極點(diǎn)為原點(diǎn),極軸為軸正方向建立平面直角坐標(biāo)系,直線l的參數(shù)方程是 (為參數(shù)).

(1)求曲線, 的直角坐標(biāo)方程;

(2)設(shè)直線l與曲線交于、兩點(diǎn),點(diǎn)的直角坐標(biāo)為(2,1),若,求直線l的普通方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù) .

(Ⅰ)證明: ,直線都不是曲線的切線;

(Ⅱ)若,使成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某種產(chǎn)品的質(zhì)量以其質(zhì)量指標(biāo)值衡量,并依據(jù)質(zhì)量指標(biāo)值劃分等級(jí)如下表:

質(zhì)量指標(biāo)值

等級(jí)

三等品

二等品

一等品

從某企業(yè)生產(chǎn)的這種產(chǎn)品中抽取200件,檢測(cè)后得到如下的頻率分布直方圖:

(Ⅰ)根據(jù)以上抽樣調(diào)查數(shù)據(jù),能否認(rèn)為該企業(yè)生產(chǎn)的這種產(chǎn)品符合“一、二等品至少要占全部產(chǎn)品92%”的規(guī)定?

(Ⅱ)在樣本中,按產(chǎn)品等級(jí)用分層抽樣的方法抽取8件,再?gòu)倪@8件產(chǎn)品中隨機(jī)抽取4件,求抽取的4件產(chǎn)品中,一、二、三等品都有的概率;

(Ⅲ)該企業(yè)為提高產(chǎn)品質(zhì)量,開(kāi)展了“質(zhì)量提升月”活動(dòng),活動(dòng)后再抽樣檢測(cè),產(chǎn)品質(zhì)量指標(biāo)值近似滿(mǎn)足,則“質(zhì)量提升月”活動(dòng)后的質(zhì)量指標(biāo)值的均值比活動(dòng)前大約提升了多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某學(xué)校研究性學(xué)習(xí)小組對(duì)該校高三學(xué)生視力情況進(jìn)行調(diào)查,在高三的全體名學(xué)生中隨機(jī)抽取了名學(xué)生的體檢表,并得到如圖的頻率分布直方圖.

年級(jí)名次

是否近視

近視

不近視

(1)若直方圖中后四組的頻數(shù)成等差數(shù)列,試估計(jì)全年級(jí)視力在以下的人數(shù);

(2)學(xué)習(xí)小組成員發(fā)現(xiàn),學(xué)習(xí)成績(jī)突出的學(xué)生,近視的比較多,為了研究學(xué)生的視力與學(xué)習(xí)成績(jī)是否有關(guān)系,對(duì)年級(jí)名次在名和名的學(xué)生進(jìn)行了調(diào)查,得到右表中數(shù)據(jù),根據(jù)表中的數(shù)據(jù),能否在犯錯(cuò)的概率不超過(guò)的前提下認(rèn)為視力與學(xué)習(xí)成績(jī)有關(guān)系?

(3)在(Ⅱ)中調(diào)查的名學(xué)生中,按照分層抽樣在不近視的學(xué)生中抽取了人,進(jìn)一步調(diào)查他們良好的護(hù)眼習(xí)慣,并且在這人中任取人,記名次在的學(xué)生人數(shù)為,求的分布列和數(shù)學(xué)期望.

7.879

附:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】三國(guó)時(shí)期趙爽在《勾股方圓圖注》中對(duì)勾股定理的證明可用現(xiàn)代數(shù)學(xué)表述為如圖所示,我們教材中利用該圖作為“( )”的幾何解釋?zhuān)?

A.如果a>b,b>c,那么a>c
B.如果a>b>0,那么a2>b2
C.對(duì)任意實(shí)數(shù)a和b,有a2+b2≥2ab,當(dāng)且僅當(dāng)a=b時(shí)等號(hào)成立
D.如果a>b,c>0那么ac>bc

查看答案和解析>>

同步練習(xí)冊(cè)答案