精英家教網 > 高中數學 > 題目詳情
(2012•梅州二模)定義在R上的函數f(x)滿足:f(x+y)=f(x)f(y),且當x>0時,f(x)>1.
(1)求f(0)的值,并證明f(x)是定義域上的增函數:
(2)數列{an}滿足a1=a≠0,f(an+1)=f(aan)f(a-1)(n=1,2,3,…),求數列{an}的通項公式及前n項和Sn
分析:(1)在 f(x+y)=f(x)f(y)中,令 x=1,y=0,可得f(0)=1,可以退出當x∈R時,f(x)>0.設x1<x2,計算 f(x1)-f(x2)<0,可得f(x)是定義域上的增函數.
(2)由數列{an}滿足a1=a≠0,f(an+1)=f(aan)f(a-1)=f[(aan)+(a-1)],由f(x)是定義域R上的增函數,可得 an+1+1=a(an +1),故{an +1}是以a+1為首項,以a為公比的等比數列.求出{an +1}的通項公式可得{an }的通項公式,從而求得{an }的前n項和sn
解答:解:(1)在 f(x+y)=f(x)f(y)中,令 x=1,y=0,可得f(1)=f(1)f(0).再由f(1)>1,可得f(0)=1.
當x<0時,f(x-x)=f(0)=f(x)f(-x)=1,由-x>0 可得f(-x)>1,f(x)=
1
f(-x)
∈(0,1).
當x>0時,同理可得f(x)>0.  綜上可得,當x∈R時,f(x)>0.
設x1<x2,則 f(x1)-f(x2)=f[(x1-x2)+x2]-f(x2)=f(x1-x2)f(x2)-f(x2)=f(x2)[f(x1-x2)-1].
由x1-x2<0,x<0時,0<f(x)<1,可得  f(x1-x2)-1<0,
∴f(x1)-f(x2)<0,f(x1)<f(x2),
故f(x)是定義域上的增函數.
(2)數列{an}滿足a1=a≠0,f(an+1)=f(aan)f(a-1)=f[(aan)+(a-1)],
由f(x)是定義域R上的增函數,可得an+1=aan +a-1,即an+1+1=a(an +1),故{an +1}是以a+1為首項,以a為公比的等比數列.
故 an +1=(a+1)an-1,故 an =(a+1)an-1-1.
故{an }的前n項和sn=(a+1)(1+a+a2+a3+…+an-1)-n=
na  , a=1
(a+1)(1-an)
1-a
  ,  a≠1
點評:本題主要考查函數的單調性的應用,等比數列的通項公式,等比數列的前n項和公式的應用,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

(2012•梅州二模)設b,c表示兩條直線,α,β表示兩個平面,則下列為真命題的是( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•梅州二模)一個社會調查機構就某社區(qū)居民的月收入調查了10 000人,并根據所得數據畫了樣本的頻率分布直方圖(如圖).
(1)為了分析居民的收入與年齡、學歷、職業(yè)等方面的關系,要從這10000人中再用分層抽樣方法抽出100人作進一步調查,求月收入在[1500,2000)(元)段應抽出的人數;
(2)為了估計該社區(qū)3個居民中恰有2個月收入在[2000,3000)(元)的概率,采用隨機模擬的方法:先由計算器算出0到9之間取整數值的隨機數,我們用0,1,2,3,…表示收入在[2000,3000)(元)的居民,剩余的數字表示月收入不在[2000,3000)(元)的居民;再以每三個隨機數為一組,代表統(tǒng)計的結果,經隨機模擬產生了20組隨機數如下:
907  966  191  925  271  932  812  458
569  683  431  257  393  027  556  488
730  113  537  989
據此估計,計算該社區(qū)3個居民中恰好有2個月收入在[2000,3000)(元)的概率.
(3)任意抽取該社區(qū)6個居民,用ξ表示月收入在(2000,3000)(元)的人數,求ξ的數學期望.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•梅州二模)設a,b∈R,若復數z=
1+2i
1+i
,則z在復平面上對應的點在( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•梅州二模)以雙曲線
x2
3
-
y2=1的左焦點為焦點,頂點在原點的拋物線方程是( 。

查看答案和解析>>

同步練習冊答案