是R上的偶函數(shù),且在上單調遞增,則,, 的大小順序是:( )
A.B.
C.D.
A

試題分析:利用函數(shù)的單調性比較函數(shù)值的大小,需要在同一個單調區(qū)間上比較,利用偶函數(shù)的性質,f(-2)=f(2),f(-π)=f(π)轉化到同一個單調區(qū)間上,再借助于單調性求解即可比較出大小.解:由已知f(x)是R上的偶函數(shù),所以有f(-2)=f(2),f(-π)=f(π),,又由在[0,+∞]上單調增,且2<3<π,所以有,f(2)<f(3)<f(π),所以f(-2)<f(3)<f(-π),故答案為:f(-π)>f(3)>(-2).故選:A.
點評:本題考查函數(shù)的奇偶性與函數(shù)的單調性,以及它們的綜合應用,函數(shù)值的大小比較,要利用單調性,統(tǒng)一在某個單調區(qū)間上比較大。
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:填空題

,則                     ;

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

的解析式為         (   )
A.3B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù)的定義域為,
(1)求
(2)當時,求函數(shù)的最大值。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

若函數(shù)f(x)=(x+a)(bx+2a)(a、b∈R)是偶函數(shù),且它的值域為(-∞,4],則該函數(shù)的解析式f(x)=    .

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

是方程的解,則屬于區(qū)間   。   )
A.(0,1)B.(1,2)C.(2,3)D.(3,4)

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù)f(x)=(m為常數(shù)0<m<1),且數(shù)列{f()}是首項為2,公差為2的等差數(shù)列.
(1)f(),當m=時,求數(shù)列{}的前n項和
(2)設·,如果{}中的每一項恒小于它后面的項,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

探究函數(shù)f(x)=x+,x∈(0,+∞)的最小值,并確定取得最小值時x的值.列表如下:
x

0.5
1
1.5
1.7
1.9
2
2.1
2.2
2.3
3
4
5
7

y

8.5
5
4.17
4.05
4.005
4
4.005
4.02
4.04
4.3
5
5.8
7.57

請觀察表中y值隨x值變化的特點,完成以下的問題.
函數(shù)f(x)=x+(x>0)在區(qū)間(0,2)上遞減;
(1)函數(shù)f(x)=x+(x>0)在區(qū)間                  上遞增.
當x=                 時,y最小=                         .
(2)證明:函數(shù)f(x)=x+在區(qū)間(0,2)上遞減.
(3)思考:函數(shù)f(x)=x+(x<0)有最值嗎?如果有,那么它是最大值還是最小值?此時x為何值?(直接回答結果,不需證明)

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

若f(x)是偶函數(shù),g(x)是奇函數(shù),且,求f(x)和g(x)的解析式。

查看答案和解析>>

同步練習冊答案