【題目】如圖,在直三棱柱中,已知,,.
(1)求異面直線與夾角的余弦值;
(2)求二面角平面角的余弦值.
科目:高中數學 來源: 題型:
【題目】公差不為0的等差數列中,已知且,其前項和的最大值為( )
A. 25 B. 26 C. 27 D. 28
【答案】B
【解析】設等差數列的公差為,
∵,
∴,
整理得,
∵,
∴.
∴,
∴當時, .
故最大,且.選B.
點睛:求等差數列前n項和最值的常用方法:
①利用等差數列的單調性, 求出其正負轉折項,便可求得和的最值;
②將等差數列的前n項和 (A、B為常數)看作關于n的二次函數,根據二次函數的性質求最值.
【題型】單選題
【結束】
9
【題目】如圖,網格紙上小正方形的邊長為1,粗實線畫出的是某多面體的三視圖,則該多面體的表面積為( )
A. B. C. 90 D. 81
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下列結論:
①y=πx是指數函數
②函數既是偶函數又是奇函數
③函數的單調遞減區(qū)間是
④在增函數與減函數的定義中,可以把任意兩個自變量”改為“存在兩個自變量
⑤與表示同一個集合
⑥所有的單調函數都有最值
其中正確命題的序號是_______________。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,四棱錐P﹣ABCD的底面ABCD是正方形,側棱PD⊥底面ABCD,PD=DC,E是PC的中點.
(1)證明PA∥平面BDE;
(2)證明:DE⊥面PBC;
(3)求直線AB與平面PBC所成角的大。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知圓C:.
(1)若圓C的切線在x軸和y軸上的截距相等,且截距不為零,求此切線的方程;
(2)從圓C外一點P向該圓引一條切線,切點為M,O為坐標原點,且有,
求使得取得最小值的點P的坐標
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某家庭進行理財投資,根據長期收益率市場預測,投資類產品的收益與投資額成正比,投資類產品的收益與投資額的算術平方根成正比.已知投資1萬元時兩類產品的收益分別為0.125萬元和0.5萬元.
(1)分別寫出兩類產品的收益與投資額的函數關系;
(2)該家庭有20萬元資金,全部用于理財投資,問:怎么分配資金能使投資獲得最大收益,其最大收益是多少萬元?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com