如圖,在長方體ABCD-A1B1C1D1中,ABBC=2,A1DBC1所成的角為,則BC1與平面BB1D1D所成角的正弦值為(  ).
A.B.C.D.
B
連接B1C,∴B1CA1D,

又∵A1DBC1所成的角為.
B1CBC1,又ABBC=2,∴長方體ABCD-A1B1C1D1為正方體,取B1D1的中點M,連接C1MBM,
C1M⊥平面BB1D1D,∴∠C1BMBC1與平面BB1D1D所成的角,∵ABBC=2,
C1M,BC1=2,
∴sin ∠C1BM.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在四棱錐PABCD中,底面是邊長為2的菱形,∠BAD=120°,且PA⊥平面ABCD,PA=2,M、N分別為PB、PD的中點.

(1)證明:MN∥平面ABCD;
(2)過點A作AQ⊥PC,垂足為點Q,求二面角AMNQ的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在三棱柱ABC-A1B1C1中,AA1C1C是邊長為4的正方形,平面ABC⊥平面AA1C1C,AB=3,BC=5.

(1)求直線B1C1與平面A1BC1所成角的正弦值;
(2)在線段BC1上確定一點D,使得AD⊥A1B,并求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè)α,β為互不重合的平面,m,n是互不重合的直線,給出下列四個命題:
①若mn,n?α,則mα
②若m?α,n?α,mβ,nβ,則αβ
③若αβ,m?α,n?β,則mn
④若α⊥β,α∩β=m,n?α,n⊥m,則n⊥β;
其中正確命題的序號為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,在直三棱柱中,,則異面直線所成角的余弦值是____________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

如圖所示,在正方體ABCDA1B1C1D1中,M、N分別是棱CD、CC1的中點,則異面直線A1M與DN所成的角的大小是    

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,正方體中,是棱的中點,是棱的中點,則異面直線所成的角為
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,長方體ABCD—A1B1C1D1中,AA1=AB=2,AD=1,點E、F、G分別是DD1、AB、CC1的中點,則異面直線A1E與GF所成角的余弦值是(   )

A.   B.   C.        D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知,是三條直線,,且的夾角為,那么夾角為   

查看答案和解析>>

同步練習(xí)冊答案