已知雙曲線數(shù)學(xué)公式的左,右焦點分別為F1,F(xiàn)2,點P在雙曲線的右支上,且|PF1|=4|PF2|,則此雙曲線的離心率e的最大值為:


  1. A.
    數(shù)學(xué)公式
  2. B.
    數(shù)學(xué)公式
  3. C.
    2
  4. D.
    數(shù)學(xué)公式
B
分析:先設(shè)P的坐標(biāo)(x,y),焦半徑得丨PF1丨=ex+a,丨PF2丨=ex-a,根據(jù)|PF1|=4|PF2|,進而可得e的關(guān)于x的表達式.根據(jù)p在雙曲線右支,進而確定x的范圍,得到e的范圍.
解答:設(shè)P(x,y),由焦半徑得丨PF1丨=ex+a,丨PF2丨=ex-a,
∴ex+a=4(ex-a),化簡得e=,
∵p在雙曲線的右支上,
∴x≥a,
∴e≤,即雙曲線的離心率e的最大值為
故選B
點評:本題主要考查了雙曲線的簡單性質(zhì).考查了學(xué)生對雙曲線定義的靈活運用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線C:
x2
9
-
y2
16
=1
的左、右焦 點分別為F1、F2,P為C的右支上一點,且|
PF2
|=|
F1F2
|,則△PF1F2
的面積等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年貴州省高三第一次月考文科數(shù)學(xué) 題型:解答題

(本小題滿分12分)已知橢圓的方程為 ,雙曲線的左、右焦

 

點分別是的左、右頂點,而的左、右頂點分別是的左、右焦點.

(1)求雙曲線的方程;                                             

(2)若直線與雙曲線C2恒有兩個不同的交點A和B,求的范圍。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年廣西桂林市高三第一次聯(lián)合調(diào)研數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

已知雙曲線的左、右焦 點分別為F1、F2,P為C的右支上一點,且的面積等于   

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年廣西桂林市高三第一次調(diào)研數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

已知雙曲線的左、右焦 點分別為F1、F2,P為C的右支上一點,且的面積等于   

查看答案和解析>>

同步練習(xí)冊答案