【題目】在極坐標(biāo)系中,方程C:表示的曲線被稱作四葉玫瑰線”(如圖)

1)求以極點為圓心的單位圓與四葉玫瑰線交點的極坐標(biāo)和直角坐標(biāo);

2)直角坐標(biāo)系的原點與極點重合,x軸正半軸與極軸重合.求直線l:上的點M與四葉攻瑰線上的點N的距離的最小值.

【答案】1)極坐標(biāo)為,直角坐標(biāo)為;(2

【解析】

1)先求出以極點為圓心的單位圓的極坐標(biāo)方程,與玫瑰線方程聯(lián)立即可求出交點的極坐標(biāo);

2)首先可得四葉玫瑰線關(guān)于直線對稱,將直線方程轉(zhuǎn)化為普通方程,直線與直線垂直,且玫瑰線在直線的同側(cè),即可得到距離的最小值;

解:(1)因為

所以,

,得

從而得到單位圓與四葉玫瑰線交點的極坐標(biāo)為,

化成直角坐標(biāo)就是

2)直觀發(fā)現(xiàn),四葉玫瑰線關(guān)于直線對稱.

事實上,將極坐標(biāo)方程化作直角坐標(biāo)方程得,

互換后方程不變,說明四葉玫瑰線關(guān)于直線對稱;

換作,換作后方程不變,說明四葉玫瑰線關(guān)于直線對稱;

直線的普通方程是,

直線與直線垂直,且玫瑰線在直線的同側(cè),

的最小值等于點到直線的距離:

.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,將等腰直角三角形沿斜邊上的高翻折,使二面角的大小為,翻折后的中點為.

)證明平面;

)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐P-ABCD中,側(cè)面PAD是邊長為2的等邊三角形且垂直于底, 的中點。

1)證明:直線平面;

2)點在棱上,且直線與底面所成角為,求二面角的余弦值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】趙爽是我國古代數(shù)學(xué)家、天文學(xué)家,大約公元222年,趙爽為《周髀算經(jīng)》一書作序時,介紹了勾股圓方圖,又稱趙爽弦圖(以弦為邊長得到的正方形是由個全等的直角三角形再加上中間的一個小正方形組成的,如圖(1)),類比趙爽弦圖,可類似地構(gòu)造如圖(2)所示的圖形,它是由個全等的三角形與中間的一個小正六邊形組成的一個大正六邊形,設(shè),若在大正六邊形中隨機取一點,則此點取自小正六邊形的概率為(

A.B.

C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2020年春節(jié)前后,一場突如其來的新冠肺炎疫情在武漢出現(xiàn)并很快地傳染開來(已有證據(jù)表明201910月、11月國外已經(jīng)存在新冠肺炎病毒),人傳人,傳播快,傳播廣,病亡率高,對人類生命形成巨大危害.在中華人民共和國,在中共中央、國務(wù)院強有力的組織領(lǐng)導(dǎo)下,全國人民萬眾一心抗擊、防控新冠肺炎,疫情早在3月底已經(jīng)得到了非常好的控制(累計病亡人數(shù)3869).然而,國外因國家體制、思想觀念與中國的不同,防控不力,新冠肺炎疫情越來越嚴(yán)重.據(jù)美國約翰斯·霍普金斯大學(xué)每日下午6時公布的統(tǒng)計數(shù)據(jù),選取56日至510日的美國的新冠肺炎病亡人數(shù)如下表(其中t表示時間變量,日期“56、“57對應(yīng)于t=6"、t=7",依次下去),由下表求得累計病亡人數(shù)與時間的相關(guān)系數(shù)r=0.98.

1)在56~10日,美國新冠肺炎病亡人數(shù)與時間(日期)是否呈現(xiàn)線性相關(guān)性?

2)選擇對累計病亡人數(shù)四舍五入后個位、十位均為0的近似數(shù),求每日累計病亡人數(shù)y隨時間t變化的線性回歸方程;

3)請估計美國511日新冠肺炎病亡累計人數(shù),請初步預(yù)測病亡人數(shù)達(dá)到9萬的日期.

:回歸方程中斜率和截距最小二乘估計公式分別為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某廠商調(diào)查甲、乙兩種不同型號電視機在10個賣場的銷售量(單位:臺),并根據(jù)這10個賣場的銷售情況,得到如圖所示的莖葉圖.

為了鼓勵賣場,在同型號電視機的銷售中,該廠商將銷售量高于數(shù)據(jù)平均數(shù)的賣場命名為該型號電視機的“星級賣場”.

(1)當(dāng)時,記甲型號電視機的“星級賣場”數(shù)量為,乙型號電視機的“星級賣場”數(shù)量為,比較的大小關(guān)系;

(2)在這10個賣場中,隨機選取2個賣場,記為其中甲型號電視機的“星級賣場”的個數(shù),求的分布列和數(shù)學(xué)期望;

(3)若,記乙型號電視機銷售量的方差為,根據(jù)莖葉圖推斷為何值時,達(dá)到最小值.(只需寫出結(jié)論)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知集合.由集合P中所有的點組成的圖形如圖中陰影部分所示,中間白色部分形如美麗的水滴”.給出下列結(jié)論:

水滴圖形與y軸相交,最高點記為A,則點A的坐標(biāo)為;

②在集合P中任取一點M,則M到原點的距離的最大值為3;

③陰影部分與y軸相交,最高點和最低點分別記為C,D,則;

④白色水滴圖形的面積是.

其中正確的有______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】中國女排,曾經(jīng)十度成為世界冠軍,鑄就了響徹中華的女排精神.女排精神的具體表現(xiàn)為:扎扎實實,勤學(xué)苦練,無所畏懼,頑強拼搏,同甘共苦,團結(jié)戰(zhàn)斗,刻苦鉆研,勇攀高峰.女排精神對各行各業(yè)的勞動者起到了激勵、感召和促進(jìn)作用,給予全國人民巨大的鼓舞.

1)看過中國女排的紀(jì)錄片后,某大學(xué)掀起“學(xué)習(xí)女排精神,塑造健康體魄”的年度主題活動,一段時間后,學(xué)生的身體素質(zhì)明顯提高,將該大學(xué)近5個月體重超重的人數(shù)進(jìn)行統(tǒng)計,得到如下表格:

月份x

1

2

3

4

5

體重超重的人數(shù)y

640

540

420

300

200

若該大學(xué)體重超重人數(shù)y與月份變量x(月份變量x依次為1,2,345…)具有線性相關(guān)關(guān)系,請預(yù)測從第幾月份開始該大學(xué)體重超重的人數(shù)降至10人以下?

2)在某次排球訓(xùn)練課上,球恰由A隊員控制,此后排球僅在A隊員、B隊員和C隊員三人中傳遞,已知每當(dāng)球由A隊員控制時,傳給B隊員的概率為,傳給C隊員的概率為;每當(dāng)球由B隊員控制時,傳給A隊員的概率為,傳給C隊員的概率為;每當(dāng)球由C隊員控制時,傳給A隊員的概率為,傳給B隊員的概率為.,,為經(jīng)過n次傳球后球分別恰由A隊員、B隊員、C隊員控制的概率.

i)若,B隊員控制球的次數(shù)為X,求;

ii)若,,,證明:為等比數(shù)列,并判斷經(jīng)過200次傳球后A隊員控制球的概率與的大小.

1:回歸方程中斜率和截距的最小二乘估計公式分別為:.

2:參考數(shù)據(jù):,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)自然對數(shù)的底數(shù))有兩個零點.

1)求實數(shù)的取值范圍;

2)若的兩個零點分別為,證明:.

查看答案和解析>>

同步練習(xí)冊答案