已知圓C:(x-2)2+(y-2)2=2,過原點(diǎn)O作圓C的切線OA、OB,切點(diǎn)依次記為A、B,過原點(diǎn)O引直線l交圓C與D、E兩點(diǎn),交AB與F點(diǎn).
(1)求直線AB的直線方程.
(2)求OD+OE的最大值.
分析:(1)先求得O,A,C,B四點(diǎn)所在圓的方程,再兩圓相減,可得公共弦,即直線AB的方程;
(2)設(shè)l的方程,代入圓的方程,表示出OD+OE,即可求得結(jié)論.
解答:解:(1)由題意,O,A,C,B四點(diǎn)共圓,
因為圓C:(x-2)2+(y-2)2=2,圓心坐標(biāo)為(2,2),半徑為
2

所以O(shè),A,C,B四點(diǎn)所在圓的圓心坐標(biāo)為(1,1),圓的半徑為
2

所以O(shè),A,C,B四點(diǎn)所在圓的方程為(x-1)2+(y-1)2=2,
因為圓C:(x-2)2+(y-2)2=2,
∴兩圓相減,可得公共弦,即直線AB的方程為x+y-3=0;
(2)設(shè)直線l:y=kx,代入圓C:(x-2)2+(y-2)2=2,消去y可得(1+k2)x2-(4+4k)x+6=0
設(shè)D(x1,y1),E(x2,y2),則OD+OE=
1+k2
(x1+x2)=4
1+
2k
1+k2
≤4
2

∴OD+OE的最大值為4
2
點(diǎn)評:本題考查圓的方程,考查兩圓的位置關(guān)系,考查直線與圓的位置關(guān)系,考查學(xué)生的計算能力,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C:(x-2)2+(y-4)2=4,直線l1過原點(diǎn)O(0,0).
(1)若l1與圓C相切,求l1的方程;
(2)若l1與圓C相交于不同兩點(diǎn)P、Q,線段PQ的中點(diǎn)為M,又l1與l2:x+2y+1=0的交點(diǎn)為N,求證:OM•ON為定值;
(3)求問題(2)中線段MN長的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C:(x+2)2+y2=24,定點(diǎn)A(2,0),M為圓C上一動點(diǎn),點(diǎn)P在AM上,點(diǎn)N在CM上(C為圓心),且滿足
.
AM
= 2
.
AP
,
.
NP
-
.
AM
=0
,設(shè)點(diǎn)N的軌跡為曲線E.
(1)求曲線E的方程;
(2)過點(diǎn)B(m,0)作傾斜角為
5
6
π
的直線l交曲線E于C、D兩點(diǎn).若點(diǎn)Q(1,0)恰在以線段CD為直徑的圓的內(nèi)部,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C:(x-2)2+y2=1,D是y軸上的動點(diǎn),直線DA、DB分別切圓C于A、B兩點(diǎn).
(1)如果|AB|=
4
2
3
,求直線CD的方程;
(2)求動弦AB的中點(diǎn)的軌跡方程E;
(3)直線x-y+m=0(m為參數(shù))與方程E交于P、Q兩個不同的點(diǎn),O為原點(diǎn),設(shè)直線OP、OQ的斜率分別為KOP,KOQ,試將KOP•KOQ表示成m的函數(shù),并求其最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C:(x-2)2+(y-1)2=2,過原點(diǎn)的直線l與圓C相切,則所有過原點(diǎn)的切線的斜率之和為
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C:(x-2)2+(y-1)2=25,過點(diǎn)M(-2,4)的圓C的切線l1與直線l2:ax+3y+2a=0平行,則l1與l2間的距離是( 。
A、
8
5
B、
2
5
C、
28
5
D、
12
5

查看答案和解析>>

同步練習(xí)冊答案