【題目】a,b為正數(shù),給出下列命題:
①若a2﹣b2=1,則a﹣b<1;
②若 =1,則a﹣b<1;
③ea﹣eb=1,則a﹣b<1;
④若lna﹣lnb=1,則a﹣b<1.
期中真命題的有

【答案】①③
【解析】解:①中,a,b中至少有一個(gè)大于等于1,則a+b>1,由a2﹣b2=(a+b)(a﹣b)=1,
所以a﹣b<1,故①正確.
②中 = =1,只需a﹣b=ab即可,
取a=2,b= 滿足上式但a﹣b= >1,故②錯(cuò);
③構(gòu)造函數(shù)y=x﹣ex , x>0,y′=1﹣ex<0,函數(shù)單調(diào)遞減,
∵ea﹣eb=1,∴a>b,
∴a﹣ea<b﹣eb
∴a﹣b<ea﹣eb=1,
故③正確;
④若lna﹣lnb=1,則a=e,b=1,a﹣b=e﹣1>1,故④不正確.
所以答案是:①③.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)y=f(x)的圖象如圖所示.觀察圖象可知函數(shù)y=f(x)的定義域、值域分別是(  )

A.[﹣5,0]∪[2,6),[0,5]
B.[﹣5,6),[0,+∞)
C.[﹣5,0]∪[2,6),[0,+∞)
D.[﹣5,+∞),[2,5]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,角A,B,C的對(duì)邊分別是a,b,c,且 acosC=(2b﹣ c)cosA.
(1)求角A的大小;
(2)求cos( ﹣B)﹣2sin2 的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)f(x)是定義在(﹣π,0)∪(0,π)的奇函數(shù),其導(dǎo)函數(shù)為f'(x),且 ,當(dāng)x∈(0,π)時(shí),f'(x)sinx﹣f(x)cosx<0,則關(guān)于x的不等式 的解集為(
A.
B. ??
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=|x+3|﹣m+1,m>0,f(x﹣3)≥0的解集為(﹣∞,﹣2]∪[2,+∞). (Ⅰ)求m的值;
(Ⅱ)若x∈R,f(x)≥|2x﹣1|﹣t2+ t成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】等腰△ABC中,AC=BC= ,AB=2,E、F分別為AC、BC的中點(diǎn),將△EFC沿EF折起,使得C到P,得到四棱錐P﹣ABFE,且AP=BP=

(1)求證:平面EFP⊥平面ABFE;
(2)求二面角B﹣AP﹣E的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=aln(x+2)﹣x2在(0,1)內(nèi)任取兩個(gè)實(shí)數(shù)p,q,且p>q,若不等式 恒成立,則實(shí)數(shù)a的取值范圍是(
A.(﹣∞,24]
B.(﹣∞,12]
C.[12,+∞)
D.[24,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在某中學(xué)舉行的環(huán)保知識(shí)競賽中,將三個(gè)年級(jí)參賽的學(xué)生的成績進(jìn)行整理后分為5組,繪制出如圖所示的頻率分布直方圖,圖中從左到右依次為第一、第二、第三、第四、第五小組,已知第二小組的頻數(shù)是40,則成績?cè)?0~100分的學(xué)生人數(shù)是( )

A.15
B.18
C.20
D.25

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)橢圓中心在坐標(biāo)原點(diǎn),A(2,0),B(0,1)是它的兩個(gè)頂點(diǎn),直線y=kx(k>0)與AB相交于點(diǎn)D,與橢圓相交于E、F兩點(diǎn).
(Ⅰ)若 ,求k的值;
(Ⅱ)求四邊形AEBF面積的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案