若數(shù)列{bn}:對于n∈N*,都有bn+2-bn=d(常數(shù)),則稱數(shù)列{bn}是公差為d的準等差數(shù)列.如數(shù)列cn:若cn=
4n-1,當n為奇數(shù)時
4n+9,當n為偶數(shù)時
,則數(shù)列{cn}是公差為8的準等差數(shù)列.設(shè)數(shù)列{an}滿足:a1=a,對于n∈N*,都有an+an+1=2n.
(Ⅰ)求證:{an}為準等差數(shù)列;
(Ⅱ)求證:{an}的通項公式及前20項和S20
(I)∵數(shù)列{an}滿足:a1=a,對于n∈N*,都有an+an+1=2n,∴an+1+an+2=2(n+1),
∴an+2-an=2.
∴數(shù)列{an}是公差為2的準等差數(shù)列.
(II)∵an+an+1=2n,
∴S20=(a1+a2)+(a3+a4)+…+(a19+a20
=2(1+3+…+19)
=2×
10×(1+19)
2

=200.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

(2013•日照一模)若數(shù)列{bn}:對于n∈N*,都有bn+2-bn=d(常數(shù)),則稱數(shù)列{bn}是公差為d的準等差數(shù)列.如:若cn=
4n-1,當n為奇數(shù)時
4n+9,當n為偶數(shù)時.
則{cn}
是公差為8的準等差數(shù)列.
(I)設(shè)數(shù)列{an}滿足:a1=a,對于n∈N*,都有an+an+1=2n.求證:{an}為準等差數(shù)列,并求其通項公式:
(Ⅱ)設(shè)(I)中的數(shù)列{an}的前n項和為Sn,試研究:是否存在實數(shù)a,使得數(shù)列Sn有連續(xù)的兩項都等于50.若存在,請求出a的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•日照一模)若數(shù)列{bn}:對于n∈N*,都有bn+2-bn=d(常數(shù)),則稱數(shù)列{bn}是公差為d的準等差數(shù)列.如數(shù)列cn:若cn=
4n-1,當n為奇數(shù)時
4n+9,當n為偶數(shù)時
,則數(shù)列{cn}是公差為8的準等差數(shù)列.設(shè)數(shù)列{an}滿足:a1=a,對于n∈N*,都有an+an+1=2n.
(Ⅰ)求證:{an}為準等差數(shù)列;
(Ⅱ)求證:{an}的通項公式及前20項和S20

查看答案和解析>>

科目:高中數(shù)學 來源:2013年山東省日照市高考數(shù)學一模試卷(理科)(解析版) 題型:解答題

若數(shù)列{bn}:對于n∈N*,都有bn+2-bn=d(常數(shù)),則稱數(shù)列{bn}是公差為d的準等差數(shù)列.如:若cn=是公差為8的準等差數(shù)列.
(I)設(shè)數(shù)列{an}滿足:a1=a,對于n∈N*,都有an+an+1=2n.求證:{an}為準等差數(shù)列,并求其通項公式:
(Ⅱ)設(shè)(I)中的數(shù)列{an}的前n項和為Sn,試研究:是否存在實數(shù)a,使得數(shù)列Sn有連續(xù)的兩項都等于50.若存在,請求出a的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:2013年山東省日照市高考數(shù)學一模試卷(文科)(解析版) 題型:解答題

若數(shù)列{bn}:對于n∈N*,都有bn+2-bn=d(常數(shù)),則稱數(shù)列{bn}是公差為d的準等差數(shù)列.如數(shù)列cn:若,則數(shù)列{cn}是公差為8的準等差數(shù)列.設(shè)數(shù)列{an}滿足:a1=a,對于n∈N*,都有an+an+1=2n.
(Ⅰ)求證:{an}為準等差數(shù)列;
(Ⅱ)求證:{an}的通項公式及前20項和S20

查看答案和解析>>

同步練習冊答案