(滿分12分)某專賣店銷售一新款服裝,日銷售量(單位為件)f (n) 與時間n(1≤n≤30、nÎ N*)的函數(shù)關(guān)系如下圖所示,其中函數(shù)f (n) 圖象中的點位于斜率為 5 和-3 的兩條直線上,兩直線交點的橫坐標(biāo)為m,且第m天日銷售量最大.
(Ⅰ)求f (n) 的表達式,及前m天的銷售總數(shù);
(Ⅱ)按以往經(jīng)驗,當(dāng)該專賣店銷售某款服裝的總數(shù)超過 400 件時,市面上會流行該款服裝,而日銷售量連續(xù)下降并低于 30 件時,該款服裝將不再流行.試預(yù)測本款服裝在市面上流行的天數(shù)是否會超過 10 天?請說明理由.
 

(Ⅰ) f (n) = ,(nÎN*)
前 12 天的銷售總量為  354 件
(Ⅱ) 見解析

解析

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(本小題滿分12分)

某次國際象棋友誼賽在中國隊和烏克蘭隊之間舉行,比賽采用積分制,比賽規(guī)則規(guī)定贏一局得2分,平一局得1分,輸一局得0分,根據(jù)以往戰(zhàn)況,每局中國隊贏的概率為,烏克蘭隊贏的概率為,且每局比賽輸贏互不影響.若中國隊第n局的得分記為,令.

(1)求的概率;

(2)若規(guī)定:當(dāng)其中一方的積分達到或超過4分時,比賽不再繼續(xù),否則,繼續(xù)進行.設(shè)隨機變量表示此次比賽共進行的局?jǐn)?shù),求的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年廣東省惠州市高三第三次調(diào)研考試數(shù)學(xué)理卷 題型:解答題

(本題滿分12分)

某商場為吸引顧客消費推出一項優(yōu)惠活動.活動規(guī)則如下:消費額每滿100元可轉(zhuǎn)動如圖所示的轉(zhuǎn)盤一次,并獲得相應(yīng)金額的返券,假定指針等可能地停在任一位置. 若指針停在A區(qū)域返券60元;停在B區(qū)域返券30元;停在C區(qū)域不返券. 例如:消費218元,可轉(zhuǎn)動轉(zhuǎn)盤2次,所獲得的返券金額是兩次金額之和.

(1)若某位顧客消費128元,求返券金額不低于30元的概率;

(2)若某位顧客恰好消費280元,并按規(guī)則參與了活動,

他獲得返券的金額記為(元).求隨機變量的分布列和數(shù)學(xué)期望.

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年山東省泰安市高三上學(xué)期期末考試數(shù)學(xué)理卷 題型:解答題

(本小題滿分12分)

某企業(yè)科研課題組計劃投資研發(fā)一種新產(chǎn)品,根據(jù)分析和預(yù)測,能獲得10萬元~1000萬元的投資收益.企業(yè)擬制定方案對課題組進行獎勵,獎勵方案為:獎金y(單位:萬元)隨投資收益x(單位:萬元)的增加而增加,且獎金不超過9萬元,同時獎金也不超過投資收益的20%,并用函數(shù)y= f(x)模擬這一獎勵方案.

(Ⅰ)試寫出模擬函數(shù)y= f(x)所滿足的條件;

(Ⅱ)試分析函數(shù)模型y= 4lgx-3是否符合獎勵方案的要求?并說明你的理由.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年山東省濟寧市高三第二次模擬考試數(shù)學(xué)(理) 題型:解答題

(本小題滿分12分)某化妝品生產(chǎn)企業(yè)為了占有更多的市場份額,擬在2010年世博會期間進行一系列促銷活動,經(jīng)過市場調(diào)查和測算,化妝品的年銷量x萬件與年促銷費t萬元之間滿足成反比例,如果不搞促銷活動,化妝品的年銷量只能是1萬件,已知2010年生產(chǎn)化妝品的設(shè)備折舊、維修等固定費用為3萬元,每生產(chǎn)1萬件化妝品需要再投入32萬元的生產(chǎn)費用,若將每件化妝品的售價定為:其生產(chǎn)成本的150%與平均每件促銷費的一半之和,則當(dāng)年生產(chǎn)的化妝品正好能銷完。

   (1)將2010年利潤y(萬元)表示為促銷費t(萬元)的函數(shù);

   (2)該企業(yè)2010年的促銷費投入多少萬元時,企業(yè)的年利潤最大?

(注:利潤=銷售收入—生產(chǎn)成本—促銷費,生產(chǎn)成本=固定費用+生產(chǎn)費用)

 

查看答案和解析>>

同步練習(xí)冊答案