16.如圖,已知四棱錐P-ABCD,側(cè)面PAD是正三角形,底面ABCD是菱形,∠BAD=60°,設(shè)平面PAD∩平面PBC=l.
(Ⅰ)求證:l∥平面ABCD;
(Ⅱ)求證:PB⊥BC.

分析 (Ⅰ)由已知利用線面平行的判定可證BC∥平面PAD,利用線面平行的性質(zhì)可證BC∥l,進而利用線面平行的判定證明l∥平面ABCD.
(Ⅱ)取AD中點O,連OP、OB,由已知得:OP⊥AD,OB⊥AD,利用線面垂直的判定可證AD⊥平面POB,由BC∥AD,可證BC⊥平面POB,利用線面垂直的性質(zhì)即可證明BC⊥PB.

解答 (本題滿分為12分)
證明:(Ⅰ)∵BC?平面PAD,AD?平面PAD,AD∥BC,
∴BC∥平面PAD…(2分)
又BC?平面PBC,平面PAD∩平面PBC=l,
∴BC∥l.…(4分)
又∵l?平面ABCD,BC?平面ABCD,
∴l(xiāng)∥平面ABCD.…(6分)
(Ⅱ)取AD中點O,連OP、OB,
由已知得:OP⊥AD,OB⊥AD,
又∵OP∩OB=O,
∴AD⊥平面POB,…(10分)
∵BC∥AD,
∴BC⊥平面POB,
∵PB?平面POB,
∴BC⊥PB.…(12分)

點評 本題主要考查了線面平行的判定與性質(zhì),線面垂直的判定與性質(zhì),考查了數(shù)形結(jié)合思想,空間想象能力和推理論證能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.拋物線y2=3x的準(zhǔn)線方程是(  )
A.$y=-\frac{3}{4}$B.$x=-\frac{3}{4}$C.$y=-\frac{1}{12}$D.$x=-\frac{1}{12}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.?dāng)?shù)列{an}的前n項和為Sn
(1)當(dāng){an}是等比數(shù)列,a1=1,且$\frac{1}{a_1}$,$\frac{1}{a_3}$,$\frac{1}{a_4}$-1是等差數(shù)列時,求an;
(2)若{an}是等差數(shù)列,且S1+a2=3,S2+a3=6,求和:Tn=$\frac{1}{S_1}+\frac{1}{S_2}+\frac{1}{S_3}+…+\frac{1}{S_n}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知函數(shù)f(x)=$\frac{a^x}{{{a^x}+\sqrt{a}}}$(a>0),若x1+x2=1,則f(x1)+f(x2)=1_,并求出$f(\frac{1}{2016})+…f(\frac{2015}{2016})$=$\frac{2015}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.邊長為2的兩個等邊△ABD,△CBD所在的平面互相垂直,則四面體ABCD的體積是1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知球的表面積為64π,則它的體積為( 。
A.16πB.$\frac{256}{3}$πC.36πD.$\frac{100}{3}$π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.如圖,在正方體..中,點P是上底面A1B1C1D1內(nèi)一動點,則三棱錐P-ABC的正(主)視圖與側(cè)(左)視圖的面積的比值為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)f(x)=$\frac{{\sqrt{3}}}{2}$sin2x-$\frac{1}{2}$cos2x,x∈R.
(1)若對于任意x∈[-$\frac{π}{12}$,$\frac{π}{2}$],都有f(x)≥a成立,求a的取值范圍;
(2)若先將y=f(x)的圖象上每個點縱坐標(biāo)不變,橫坐標(biāo)變?yōu)樵瓉淼?倍,然后再向左平移$\frac{π}{6}$個單位得到函數(shù)y=g(x)的圖象,求函數(shù)y=g(x)-$\frac{1}{3}$在區(qū)間[-2π,4π]內(nèi)的所有零點之和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.在進行一項擲骰子放球游戲中,規(guī)定:若擲出1點,甲盒中放一球;若擲出2點或3點,乙盒中放一球;若擲出4點或5點或6點,丙盒中放一球,前后共擲3次,設(shè)x、y、z分別表示甲、乙、丙3個盒子中的球數(shù)..
(1)求擲完3次后,x=0,y=1,z=2的概率;
(2)記ξ=x+z,求隨機變量ξ的數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊答案